ТРУБОПРОВОДНЫЕ СИСТЕМЫ ИЗ ПОЛИПРОПИЛЕНА

Трубы. Фитинги. Инструмент.

КАТАЛОГ ПРОДУКЦИИ

Издание 2022-12 www.fusitek.ru

СОДЕРЖАНИЕ

1. Производство в России

- 1.1. Завод
- 1.2. Почему Fusitek?
- 1.3. Партнеры и поставщики

2. Технические характеристики и положения

- 2.1. Применение
- 2.2. Характеристики материалов
- 2.3. Требования к трубам и соединительным деталям
- 2.4. Классификация условий эксплуатации
- 2.5. Технические положения
- 2.6. Контроль качества
- 2.7. Условия транспортировки и хранения

3. Монтаж системы

- 3.1. Термофузионная сварка
- 3.2. Монтаж трубопроводов из ППР
- 3.3. Протокол испытаний
- 3.4. Меры предосторожности

4. Обзор продукции

- 4.1. Трубы
- 4.2. Соединительные детали и краны
- 4.3. Монтажный инструмент

5. Часто задаваемые вопросы

1 ПРОИЗВОДСТВО В РОССИИ

1.1. Завод

В начале 2013 года было успешно запущено производственное предприятие Fusitek, которое входит в состав группы компаний "Юнайтед Термо Рус". Оно располагается в городе Богородицк Тульской области и специализируется на выпуске полимерных трубопроводных систем для отопления и водоснабжения. Благодаря самым передовым технологическим решениям, используемым на заводе, и современной лаборатории с полным комплексом испытательного оборудования, мы гарантируем высокое качество и надежность нашей продукции. Уже сейчас производственные мощности позволяют изготавливать более 45 миллионов погонных метров труб в год, а в ближайшее время на предприятии планируется запуск еще свыше 20 трубных экструзионных линий и порядка 50 термопластавтоматов, что позволит выйти на более высокий уровень производительности и удовлетворить постоянно растущий спрос на продукцию под маркой Fusitek.

На сегодняшний день мы производим:

- Напорные трубопроводные системы из полипропилена (PPRC type 3): включая однослойные и композитные армированные трубы, фитинги, краны и аксессуары
- Трубопроводные системы аксиальной запрессовки: трубы из сшитого полиэтилена (PE-Xa/EVOH) и фитинги из PPSU и PVDF
- Однослойные и многослойные трубы для водяного теплого пола из термостойкого полиэтилена (PE-RT и PE-RT/EVOH)
- Многослойные трубы для водяного теплого пола из сшитого полиэтилена (PE-Xb/EVOH)
- Сантехнические аксессуары из полиамида со стекловолокном (PA66+GF)

1.2. Почему Fusitek?

Что означает Fusitek?

Fusitek расшифровывается как "fusion technologies", что означает – "технологии сварки методом плавления". Такой способ соединения полимерных труб и фитингов является простым и очень надежным. На сегодняшний день это один из самых востребованных видов монтажа пластиковых трубопроводов в мире.

Собственное современное производство

На сегодняшний день мы уже можем изготавливать свыше 40 миллионов погонных метров трубы в год! Лучшее оборудование и технологии из Германии, Австрии, Южной Кореи и КНР позволяют обеспечивать самый высокий уровень качества.

Удобное географическое расположение

Fusitek имеет удобное расположение с точки зрения логистики: завод находится в городе Богородицк Тульской области на трассе М4 Дон, это всего 220 км от Москвы. Возможны удобные маршруты по всему ЦФО, на Юг России и Урал, в Республику Беларусь.

Собственное конструкторское бюро

Мы располагаем собственным конструкторским бюро, тесно сотрудничающим с ведущими немецкими и австрийскими специалистами в области литья и экструзии, и лабораторией, оснащенной полным комплексом испытательного оборудования.

Безопасность и экологичность продукции

Полипропилен является одним из самым экологически чистых полимеров, он практически не вступает ни с чем в химическую реакцию и сам по себе не токсичен. Производственные отходы из полипропилена можно перерабатывать на 100% и вторично использовать.

Передовые разработки и уникальные технологии

Наши специалисты обладают уникальными знаниями и технологиями в области экструзии, литья и компаундирования полимеров, в частности:

- Технология производства труб РЕ-Ха пероксидной сшивкой (методом Энгеля)
- Технология производства труб PE-Xb силановой сшивкой
- Армирование полимеров стеклонаполненными композициями
- Трехслойная и пятислойная соэкструзия труб

"Пионеры" отрасли

Мы первые в России начали производство труб из полипропилена, армированных композицией из стекловолокна.

Мы первые в России запустили полный производственный цикл по изготовлению труб и фитингов для систем аксиальной запрессовки

Глубокое понимание специфики российского рынка

Постоянно расширяющийся ассортимент и прямой контакт с монтажными и строительными организациями, позволяют нам четко отслеживать основные тенденции и "тренды" строительного рынка.

Гарантия и техническая поддержка

На всю производимую продукцию под маркой Fusitek предоставляется заводская гарантия. Специалисты компании всегда готовы оказать необходимую техническую поддержку.

1.3. Партнеры и поставщики

Мы работаем только с лучшими поставщиками сырья и оборудования. Компании являются стратегическими партнерами при производстве продукции под маркой Fusitek®.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПОЛОЖЕНИЯ

2.1. Применение

Трубопроводные системы марки Fusitek[®] из полипропилена рандом сополимера (тип 3) идеально подходят для использования в гражданском и промышленном строительстве внутри зданий в следующих системах:

- системы горячего и холодного водоснабжения
- системы отопления
- системы подачи и транспортировки питьевой воды
- системы кондиционирования
- системы промышленных трубопроводов (например, для транспортировки агрессивных сред: кислот, щелочей и т.п., с учётом химической устойчивости)

Основные преимущества трубопровода из ППР

- Полная гомогенность после сварки
- Легкий и чистый монтаж
- Гигиеничность и экологичность
- Легкий вес
- Низкие потери напора
- Химическая устойчивость
- Высокая звукоизоляция

- Термостабильность и высокая ударная вязкость
- Низкая электропроводность
- Низкая теплопроводность: λ=0.23 Вт/мК
- Срок службы системы 50 лет
- Устойчивость к электрохимической коррозии
- Не образуются отложения
- Возможность вторичной переработки

2.2. Характеристики материалов

Характеристики материала

ППР (полипропилен рандом сополимер тип 3)

Таблица 1

Свойства	Значение
Плотность ППР, г/см³	0.901-0.905
Показатель текучести расплава ППР, г/10 мин	0.27-0.3
Коэффициент эквивалентной шероховатости, мм	0.01
Предел текучести при растяжении (23°C, v=50 мм/мин), МПа	25-27
Коэффициент теплопроводности, Вт/м̂·С	0.23

Таблица 2

Гидравлический тест					
Свойства Показатели					
20°C, 1 ч, давление 16 МПа	Утечек или поломок нет				
95°C, 22 ч, давление 4.2 МПа	Утечек или поломок нет				
95°C, 1000 ч, давление 3.5 МПа	Утечек или поломок нет				

Адгезив Mitsui Admer марки QF551E

Характеристики материала Mitsui Admer марки QF551E

Таблица 3

Свойства	Метод тестирования (ASDM)	Единица измерения	Материал (QF551E)
Показатель текучести расплава (230°C/2.16 кг)	D1238	г/10 мин	5.0
Плотность	D1505	г/см³	0.89
Предел прочности при растяжении	D638	мПа	17
Предел прочности на разрыв	D638	мПа	17
Удлинение при растяжении	D638	%	>500
Ударная прочность по Изоду	D256	Дж/м²	Не разрушается
Твердость по Шору	D2240	шкала D	59
Точка размягчения по Вика	D1525	°C	120

Латунь марки CW617N (CuZn40Pb2)

Химический состав (%)								
Fe	Ni	Al	Cu	Pb	Sn	Другие элементы	Zn	
не более 0.3	не более 0.3	не более 0.05	57-59	1.6-2.5	не более 0.3	всего 0.2	остальное	

Латунь марки CW614N (CuZn39Pb3)

Таблица 5

	Химический состав (%)							
Fe Ni Al Cu Pb Sn Другие элементы Zn							Zn	
не более 0.3	не более 0.3	не более 0.05	57-59	2.5-3.5	не более 0.3	всего 0.2	остальное	

Пожарно-технические характеристики ППР

Пожарно-технические характеристики ППР согласно классификации, принятой в Ф3 №123 «Технический регламент о требованиях пожарной безопасности», приведены в **Таблице 6**.

Температура плавления	140-144 °C
Температура начала деструкции	245-250 °C
Температура воспламеняемости	320-330 °C
Показатель горючести	около 20%

Таблица 6

Пожарно-технические характеристики	Группа
Группа горючести	Г4
Группа воспламеняемости	В3
Дымообразующая способность	дз
Токсичность продуктов горения	ТЗ

Расчетный срок службы трубопроводов ППР

Расчетный срок службы трубопроводов ППР Fusitek составляет более 50 лет при условии правильного монтажа и соблюдений характеристик материала. Возможны кратковременные пиковые температуры до 100°C. При длительных температурах воды от 70°C до 90°C срок службы трубопроводной системы сокращается. (Смотрите *Таблицу 10* Допустимое рабочее давление трубопровода из ППР для водоснабжения)

Эксплуатационные параметры трубопровода из ППР для водоснабжения						
Вода	Макс. рабочее давление, бар	Макс.рабочая температура, °C	Эксплуатация в год, часов			
Холодная вода	от 0 до 10	20	8760			
Горячая вода	от 0 до 10	до 60 до 85	8710 50			

2.3. Требования к трубам и соединительным деталям

Требования к трубам и соединительным деталям

Требования к системам трубопроводов водоснабжения и отопления установлены в ГОСТ 32415-2013. Стандарт регламентирует размеры труб, а также параметры, определяющие срок их службы (длительную прочность материала) и условия эксплуатации (классификация). Согласно ГОСТ 32415-2013, трубы и соединительные компоненты классифицируются не по номинальному давлению, а по размерному соотношению SDR, максимально допустимому рабочему давлению MOP, минимальной длительной прочности MRS и коэффициенту запаса прочности **C**:

- номинальное давление **PN, бар**: условная величина, применяемая для классификации труб и компонентов трубопроводов, численно равная максимально допустимому рабочему давлению, выраженному в барах (1 бар=0,1 МПа);
- максимальное рабочее давление при постоянной температуре **MOP**, **MПа**: максимальное значение постоянного внутреннего давления воды в трубопроводе в течение срока службы 50 лет, определяемое по следующей формуле:
- MOP = 2 MRS \times C_t /[C (SDR 1], где \mathbf{C}_t коэффициент снижения максимального рабочего давления при температуре воды более 20°C;
- минимальная длительная прочность **MRS**, **MПа**: характеристика материала трубы, численно равная напряжению в стенке, возникающему при действии постоянного внутреннего давления, которое труба способна выдержать в течение 50 лет при температуре 20°С. Для полипропилена (ППР тип 3) MRS должно быть не менее 8 МПа;
- коэффициент запаса прочности **C**: безразмерная величина, имеющая значение большее единицы, учитывающая особенности эксплуатации трубопровода, а также его свойства, отличающиеся от учтенных при расчете **MRS**. Минимальное значение равно 1.25, при транспортировке горячей воды 1.5, для систем отопления 2.5;
- стандартное размерное отношение **SDR**: безразмерная величина, численно равная отношению номинального наружного диаметра трубы **d** к номинальной толщине стенки **e**;
- номинальный наружный диаметр **d, мм**: условный размер, принятый для классификации труб из термопластов и всех составляющих элементов систем трубопроводов, соответствующий минимально допустимому значению среднего наружного диаметра трубы;
- номинальная толщина стенки **e**, **мм**: условный размер, соответствующий минимально допустимой толщине стенки трубы в любой точке ее поперечного сечения.

Примечание: определения величин указаны по ГОСТ 32415-2013.

	Номинальная толщина стенок труб из ППР							
Внешний	Серия труб S (мм) и значение SDR							
диаметр трубы, мм	S5/SDR11	S4/SDR9	S3.2 / SDR7.4	S2.5/SDR6	S2/SDR5			
16	1,8	1,8	2,2	2,7	3,3			
20	1,9	2,3	2,8	3,4	4,1			
25	2,3	2,8	3,5	4,2	5,1			
32	2,9	3,6	4,4	5,4	6,5			
40	3,7	4,5	5,5	6,7	8,1			
50	4,6	5,6	6,9	8,3	10,1			
63	5,8	7,1	8,6	10,5	12,7			
75	6,8	8,4	10,3	12,5	15,1			
90	8,2	10,1	12,3	15,0	18,1			
110	10,0	12,3	15,1	18,3	22,1			
125	11,4	14,0	17,1	20,8	25,1			
140	12,7	15,7	19,2	23,3	28,1			
160	14,6	17,9	21,9	26,6	32,1			

Длительная прочность напорных труб из ППР (Изотермы прочности)

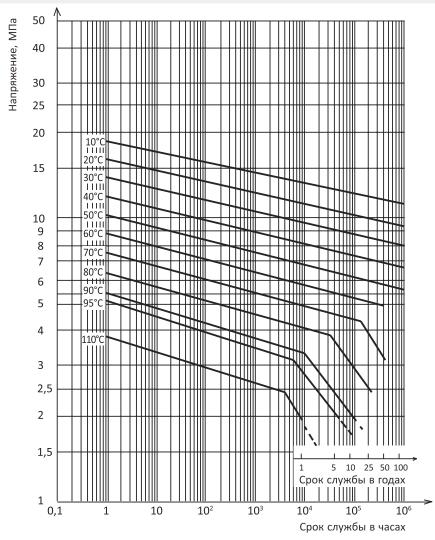


График 1 Длительная прочность напорных труб из ППР (Изотермы прочности)

Определение срока эксплуатации труб в системах отопления

Для того, чтобы установить срок эксплуатации трубопровода, необходимо определить расчетное напряжение в стенке трубы, рассчитываемое по максимальному эксплуатационному давлению по следующей формуле:

$$\sigma_v = C \frac{P \times (D-S)}{2 \times S}$$

σ_v- Расчетное напряжение, МПа

С - Коэффициент безопасности, для систем отопления составляет 2.5

Р - Максимальное давление, МПа

D - Наружный диаметр трубы, мм

s - Толщина стенки, мм

Полученную величину расчетного напряжения определяем на *Графике 1* Длительная прочность напорных труб из ППР (Изотермы прочности). Необходимо найти точку пересечения расчетного напряжения с изотермой температуры воды. От точки пересечения ведем перпендикуляр вниз до горизонтальной шкалы со временем срока службы напорной трубы. Время в точке пересечения перпендикуляра будет предполагаемым сроком эксплуатации трубопровода при непрерывной работе системы в течение года. Данное время также может быть откорректировано коэффициентом продолжительности календарного года к продолжительности отопительного сезона.

Пример 1:

σν - Расчетное напряжение, МПа: ?

Вид трубы: SDR6 (PN20) 25 × 4.2 мм

Максимальное рабочее давление Р = 6 бар (0.6 МПа)

Максимальная рабочая температура t = 70°C

Длительность отопительного сезона: 7 месяцев

Коэффициент безопасности С = 2.5 (отопление)

$$\sigma_v = C \frac{P \times (D-S)}{2 \times S} = 3.71 \text{ M}\Pi a$$

По **Графику 1** находим величину расчетного напряжения, которая составит 30 лет. С учетом длительности отопительного сезона предполагаемый срок эксплуатации составит:

2.4. Классификация условий эксплуатации

Классификация условий эксплуатации трубопроводных систем согласно ГОСТ 32415-2013 и EN ISO 15874-1

Таблица 9

	Классификация условий эксплуатации согласно ГОСТ 32415-2013								
Класс эксплуатации	T _{pa6} ,	Время при Т _{раб} , годы	T _{макс} ,	Время при Т _{макс} , годы	Т _{авар} , °С	Время при, Т _{авар,} часы	Применение		
1	60	49	80	1	95	100	Горячее водоснабжение (60°C)		
2	70	49	80	1	95	100	Горячее водоснабжение (70°C)		
4	20 40 60	2,5 20 25	70	2,5	100	100	Высокотемпературное напольное отопление. Низкотемпературное отопление отопительными приборами		
5	20 60 80	14 25 10	90	1	100	100	Высокотемпературное отопление отопительными приборами		
XB	20	50	-	-	_	-	Холодное водоснабжение		

Т_{раб} - рабочая температура или комбинация рабочих температур транспортируемой воды; **Т**_{макс} - максимальная рабочая температура транспортируемой воды, действие которой ограничено по времени;

Т_{авар} - аварийная температура транспортируемой воды, возникающая в аварийных ситуациях при нарушении работы автоматики терморегулирования, при этом аварийные фазы в отдельности не должны превышать 3 часов.

Максимальный срок службы напорного трубопровода для каждого класса эксплуатации определяется суммарным временем работы трубопровода при температурах $T_{\text{раб}}$, $T_{\text{макс}}$, $T_{\text{авар}}$ в течение 50 лет. При сроке службы менее 50 лет все временные характеристики, кроме $T_{\text{авар}}$, следует пропорционально уменьшать. Разрешается устанавливать другие классы эксплуатации, но значения температур должны быть не более указанных для класса 5.

Трубы и фитинги, предназначенные для классов эксплуатации 1, 2, 4 и 5, должны быть пригодными для класса эксплуатации «ХВ» при максимальном рабочем давлении 1,0 МПа. Напорные трубы и соединительные детали эксплуатируются при рабочих температурах транспортируемой среды от +2°C до +80°C. Кроме того, они способны выдерживать кратковременное превышение максимальной рабочей температуры транспортируемой среды до +90°C и аварийной температуры до +100°C.

Допустимое рабочее давление

Таблица 10

	допустимо	1	1	іровода из ППР <i>і</i> ⊺	1					
	E	SDR11	SDR7.4	SDR6	SDR11	SDR7.4	SDR6			
емпература	Период эксплуатации	Коэфф	ициент безоп	асности 1.5	Коэффи	циент безопасн	ости 1.25			
	,,,,,,,		Допустимое рабочее давление в барах							
	1	17.6	27.8	35.0	21.1	33.4	42.1			
10°C	5	16.6	26.4	33.2	19.8	31.5	39.7			
	10	16.1	25.5	32.1	19.3	30.7	38.6			
	25	15.6	24.7	31.1	18.7	29.7	37.4			
	50	15.2	24.0	30.3	18.2	28.9	36.4			
	1	15.0	23.8	30.0	18.0	28.5	35.9			
	5	14.1	22.3	28.1	16.9	26.8	33.7			
20°C	10	13.7	21.7	27.3	16.4	26.1	32.8			
	25	13.3	21.1	26.5	15.9	25.2	31.7			
	50	12.9	20.4	25.7	15.4	24.5	30.9			
	1	12.8	20.2	25.5	15.3	24.2	30.5			
	5	12.0	19.0	23.9	14.3	22.7	28.6			
30°C	10	11.6	18.3	23.1	13.9	22.1	27.8			
	25	11.2	17.7	22.3	13.4	21.3	26.8			
	50	10.9	17.3	21.8	13.0	20.7	26.1			
	1	10.8	17.1	21.5	13.0	20.6	25.9			
	5	10.1	16.0	20.2	12.1	19.2	24.2			
40°C	10	9.8	15.6	19.6	11.8	18.7	23.5			
	25	9.4	15.0	18.8	11.3	18.0	22.6			
	50	9.2	14.5	18.3	11.0	17.4	22.0			
	1	9.2	14.5	18.3	11.0	17.4	21.9			
	5	8.5	13.5	17.0	10.2	16.2	20.4			
50°C	10	8.2	13.1	16.5	9.9	15.7	19.8			
	25	8.0	12.6	15.9	9.5	15.1	19.0			
	50	7.7	12.2	15.4	9.2	14.7	18.5			
	1	7.7	12.2	15.4	9.2	14.7	18.5			
	5	7.2	11.4	14.3	8.6	13.6	17.2			
60°C	10	6.9	11.0	13.8	8.3	13.2	16.6			
	25	6.7	10.5	13.3	8.0	12.7	16.0			
	50	6.4	10.1	12.7	7.7	12.3	15.5			
	1	6.5	10.3	13.0	7.8	12.3	15.5			
	5	6.0	9.5	11.9	7.2	11.4	14.4			
70°C	10	5.9	9.3	11.7	7.0	11.1	13.9			
	25	5.1	8.0	10.1	6.0	9.6	12.1			
	80°C	4.3	6.7	8.5	5.1	8.1	10.2			
	1	5.5	8.6	10.9	6.5	10.3	13.0			
20%	5	4.8	7.6	9.6	5.7	9.1	11.5			
80°C	95°C	4.0	6.3	8.0	4.8	7.7	9.7			
	95°C	3.2	5.1	6.4	3.9	6.2	7.8			
0500	1	3.9	6.1	7.7	4.6	7.3	9.2			
95°C	5	2.5	4.0	5.0	3.1	4.9	6.2			

Примечание*: У армированных труб (Faser и ППР/Ал/ППР) более высокое рабочее напряжение при меньшей толщине стенки и большей пропускной способности.

Примечание:** Для напорных полипропиленовых трубопроводов, транспортирующих горячую воду, коэффициент запаса прочности (SF) следует принимать равным 1.5.

Допустимое рабочее давление трубопровода из ППР для отопления

Таблица 11

Отопительный сезон	Температура	Период эксплуатации	Труба Faser	Труба PPR/AI/PPR
		5	14.11	14.11
	7500	10	13.57	13.57
	75°C	25	11.58	11.58
		45	10.05	10.05
		5	13.12	13.12
	00%	10	12.54	12.54
	80°C	25	10.56	10.56
Постоянная температура 70 °C,		40	9.41	9.41
температура 70°С, включая 60 дней в году при температуре:		5	12.03	12.03
при температуре.	05%	10	11.52	11.52
	85°C	25	9.22	9.22
		35	8.48	8.48
	90°C	5	11.04	11.04
		10	9.76	9.76
		25	7.81	7.81
		30	7.46	7.46
		5	14.02	14.02
	75°C	10	13.38	13.38
		25	11.33	11.33
		45	9.82	9.82
		5	12.90	12.90
		10	12.35	12.35
Постоянная	80°C	25	10.05	10.05
температура 70°C, включая 90 дней в году		37.5	9.09	9.09
при температуре:		5	11.81	11.81
	0.50	10	10.72	10.72
	85°C	25	8.58	8.58
		32.5	8.03	8.03
		5	10.59	10.59
	90°C	10	8.96	8.96
			7.17	7.17

2.5. Технические положения

Потери давления и расчетная скорость протекания в трубопроводных системах Fusitek ППР, в зависимости от расхода воды

Q - расход воды (л/с)

R - потери давления (кПа/м)

V - скорость движения воды (м/с)

	ſ	Тот	-			_	асчет 1, в з		_		_					-			систе С	емах	(
			(уд	ель	ный в	зес:	998,2	2 кг	/M³ ,	кин	етич	еск	ая вя	зко	сть: 1	,00	4 x 10	0-6 v	л²/c)			
Q	20 M	M	25 M	M	32 M	M	40 M	M	50 M	M	63 M	M	75 M	M	90 M	M	110 n	νм	125 n	νw	160 n	ΛМ
۷	R	٧	R	V	R	٧	R	V	R	V	R	٧	R	V	R	V	R	V	R	٧	R	V
0.01	0.006	0.1	0.002	0.1	0.001	0.1																
0.02	0.012	0.1	0.005	0.1	0.002	0.1																
0.03		_		0.1	0.003	0.1		0.1														
0.04		0.2	0.017	0.1	0.004	0.1		0.1														
0.05		0.2	0.025	0.2	0.008	0.1			0.001	0.1												
0.06	0.101	0.3	0.034	0.2		0.1			0.001	0.1												
0.07	0.132	0.3	0.044	0.2			0.005	_	0.001	0.1												
0.08	0.166	0.4	0.055	0.2	0.018	0.2	0.006	0.1	0.002	0.1												
0.09	0.203	0.4	0.068	0.3	0.022	0.2	0.007	0.1	0.003	0.1	0.001	0.1										
0.1	0.244	0.5	0.082	0.3	0.026	0.2	0.009	0.1	0.003	0.1	0.001	0.1										
0.12	0.335	0.6	0.112	0.4	0.035	0.2	0.012	0.1	0.004	0.1	0.001	0.1										
0.16	0.555	0.8	0.185	0.5	0.058	0.3	0.020	0.2	0.007	0.1	0.002	0.1										
0.18	0.684	0.9	0.227	0.6	0.072	0.3	0.024	0.2	0.008	0.1	0.003	0.1										
0.2	0.823	1.0	0.273	0.6	0.086	0.4	0.029	0.2	0.010	0.2	0.003	0.1	0.001	0.1	0.001	0.1						
0.3	1.693	1.5	0.559	0.9	0.175	0.6	0.059	0.4	0.020	0.2	0.007	0.1	0.003	0.1	0.001	0.1						
0.4	2.837	1.9	0.932	1.2	0.291	0.8	0.099	0.5	0.034	0.3	0.011	0.2	0.005	0.1	0.002	0.1	0.001	0.1				
0.5	4.245	2.4	1.389	1.5	0.432	0.9	0.146	0.6	0.050	0.4	0.017	0.2	0.007	0.2	0.003	0.1	0.001	0.1	0.001	0.1		
0.6	5.911	2.9	1.928	1.8	0.598	1.2	0.202	0.7	0.069	0.5	0.023	0.3	0.010	0.2	0.004	0.1	0.002	0.1	0.001	0.1		
0.7	7.831	3.4	2.546	2.1	0.787	1.3	0.266	0.8	0.090	0.5	0.030	0.3	0.013	0.2	0.005	0.2	0.002	0.1	0.001	0.1		
0.8			3.243	2.5	1.001	1.5	0.336	1.0	0.115	0.6	0.038	0.4	0.017	0.3	0.007	0.2	0.003	0.1	0.001	0.1		
0.9			4.018	2.8	1.237	1.7	0.415	1.1	0.141	0.7	0.047	0.4	0.020	0.3	0.008	0.2	0.003	0.1	0.002	0.1	0.001	0.1
1.0			4.869	3.1	1.496	1.9	0.501	1.2	0.170	0.8	0.056	0.5	0.024	0.3	0.010	0.2	0.004	0.2	0.002	0.1	0.001	0.1
1.2					2.081	2.3	0.695	1.4	0.236	0.9	0.078	0.6	0.034	0.4	0.014	0.3	0.005	0.2	0.003	0.2	0.001	0.1
1.4					2.755	2.6	0.918	1.7	0.311	1.1	0.102	0.7	0.044	0.5	0.018	0.3	0.007	0.2	0.004	0.2	0.001	0.1
1.6					3.516	3.0	1.169	1.9	0.395	1.2	0.130	0.8	0.056	0.5	0.023	0.4	0.009	0.3	0.005	0.2	0.001	0.1
1.8					4.363	3.4	1.448	2.2	0.488	1.4	0.160	0.9	0.069	0.6	0.029	0.4	0.011	0.3	0.006	0.2	0.002	0.1
2.0					5.294	3.8	1.754	2.4	0.590	1.5	0.194	1.0	0.084	0.7	0.035	0.5	0.013	0.3	0.007	0.2	0.002	0.2
2.2					6.311	4.1	2.087	2.6	0.702	1.7	0.230	1.1	0.099	0.8	0.041	0.5	0.016	0.4	0.008	0.3	0.003	0.2
2.4					7.411	4.5	2.447	2.9	0.821	1.8	0.269	1.2	0.116	0.8	0.048	0.6	0.018	0.4	0.010	0.3	0.003	0.2
2.6					8.594	4.9	2.833	3.1	0.950	2.0	0.310	1.3	0.134	0.9	0.055	0.6	0.021	0.4	0.011	0.3	0.004	0.2
2.8					9.861	5.3	3.246	3.4	1.087	2.1	0.355	1.4	0.153	1.0	0.063	0.7	0.024	0.4	0.013	0.3	0.004	0.2
3.0									1.232										0.015	0.4	0.005	0.2
3.2									1.386						-			-	0.017	0.4	0.005	0.2
3.4							4.641				0.504								0.018	0.4	0.006	0.3
3.6									1.719	-								-	0.020	0.4	0.006	0.3
3.8									1.898									_	0.022	0.5	0.007	0.3
4.0							6.269		2.086	-		_						-		0.5	0.008	0.3

	20 N	ıw	25 N	ıw	32 N	ıM	40 M	M	50 M	M	63 M	M	75 N	ım	90 M	M	110 /	νM	125 n	ΛМ	160 N	ΛМ
Q	R	٧	R	V	R	V	R	v	R	V	R	v	R	V	R	V	R	v	R	٧	R	V
4.2							6.863	5.0	2.281	3.2	0.740	2.0	0.318	1.4	0.130	1.0	0.049	0.7	0.027	0.5	0.008	0.3
4.4							7.482	5.3	2.485	3.4	0.806	2.1	0.346	1.5	0.142	1.0	0.054	0.7	0.029	0.5	0.009	0.3
4.6							8.127	5.5	2.697	3.6	0.874	2.2	0.375	1.6	0.154	1.1	0.058	0.7	0.032	0.6	0.010	0.3
4.8							8.798	5.8	2.917	3.7	0.944	2.3	0.405	1.6	0.166	1.1	0.063	0.8	0.034	0.6	0.010	0.4
5.0							9.493	6.0	3.145	3.8	1.017	2.4	0.436	1.7	0.178	1.2	0.068	0.8	0.037	0.6	0.011	0.4
5.2							10.214	6.2	3.381	4.0	1.093	2.5	0.468	1.8	0.192	1.2	0.073	0.8	0.039	0.6	0.012	0.4
5.4									3.626	4.1	1.171	2.6	0.501	1.8	0.205	1.3	0.078	0.9	0.042	0.7	0.013	0.4
5.6									3.878	4.3	1.252	2.7	0.536	1.9	0.219	1.3	0.083	0.9	0.045	0.7	0.014	0.4
5.8									4.139	4.4	1.335	2.8	0.571	2.0	0.233	1.4	0.088	0.9	0.048	0.7	0.015	0.4
6.0									4.407	4.6	1.421	2.9	0.607	2.0	0.248	1.4	0.094	0.9	0.051	0.7	0.016	0.5
6.2									4.683	4.7	1.509	3.0	0.645	2.1	0.263	1.5	0.100	1.0	0.054	0.8	0.016	0.5
6.4									4.968	4.9	1.600	3.1	0.683	2.2	0.279	1.5	0.106	1.0	0.057	0.8	0.017	0.5
6.6									5.260	5.1	1.693	3.2	0.723	2.2	0.295	1.6	0.112	1.0	0.060	0.8	0.018	0.5
6.8									5.560	5.2	1.789	3.3	0.763	2.3	0.312	1.6	0.118	1.1	0.064	0.8	0.019	0.5
7.0									5.869	5.4	1.887	3.4	0.805	2.4	0.328	1.7	0.124	1.1	0.067	0.9	0.020	0.5
7.5									6.674	5.7	2.143	3.6	0.913	2.6	0.372	1.8	0.141	1.2	0.076	0.9	0.023	0.6
8.0									7.528	6.1	2.414	3.9	1.028	2.7	0.419	1.9	0.158	1.3	0.085	1.0	0.026	0.6
9.0									9.385	6.9	3.002	4.3	1.277	3.1	0.519	2.1	0.196	1.4	0.106	1.1	0.032	0.7
10.0									11.438	7.7	3.651	4.8	1.550	3.4	0.630	2.4	0.237	1.6	0.128	1.2	0.039	0.7
12.0									16.105	9.2	5.120	5.8	2.134	4.1	0.879	2.8	0.330	1.9	0.178	1.5	0.054	0.9

Таблица 13

		Пот		-		-			скор симо		-				-				стема	эх		
			(уд	ель	ный в	зес	998,	2 кг	/м³ , к	ине	тичес	кая	вязко	СТЬ	1,00	4 x	10 ⁻⁶ r	Λ²/(c)			
Q	20 M		25 M	1	32 M	г —	40 N		50 M		63 N	1	75 M	r	90 N		110 n	г —	125 N	1	160 n	
	R	V	R	V	R	V	R	V	R	V	R	V	R	V	R	V	R	V	R	V	R	V
0.01	0.01	0.1																				
0.02	0.019	0.1	0.008			0.1																Ш
0.03	0.054	0.2	0.012	0.1	0.004	0.1	0.002	0.1														Ш
0.04	0.088	0.3	0.031	0.2	0.006	0.1	0.002	0.1														
0.05	0.129	0.3	0.045	0.2	0.014	0.1	0/003	0.1	0.001	0.1												
0.06	0.176	0.4	0.061	0.2	0.019	0.1	0.007	0.1	0.001	0.1												
0.07	0.230	0.4	0.080	0.3	0.025	0.2	0.009	0.1	0.003	0.1	0.001	0.1										
0.08	0.290	0.5	0.101	0.3	0.032	0.2	0.011	0.1	0.004	0.1	0.001	0.1										
0.09	0.357	0.6	0.123	0.4	0.039	0.2	0.013	0.1	0.005	0.1	0.002	0.1										
0.1	0.428	0.6	0.148	0.4	0.046	0.2	0.016	0.2	0.005	0.1	0.002	0.1										
0.12	0.588	0.7	0.203	0.5	0.063	0.3	0.022	0.2	0.007	0.1	0.003	0.1										
0.16	0.976	1.0	0.336	0.6	0.104	0.4	0.036	0.3	0.012	0.2	0.004	0.1	0.001	0.1								
0.18	1.203	1.1	0.413	0.7	0.128	0.4	0.044	0.3	0.015	0.2	0.005	0.1	0.002	0.1								
0.2	1.450	1.2	0.497	0.8	0.154	0.5	0.053	0.3	0.018	0.2	0.006	0.1	0.003	0.1	0.001	0.1						
0.3	2.992	1.8	1.019	1.2	0.314	0.7	0.107	0.5	0.036	0.3	0.012	0.2	0.005	0.1	0.002	0.1						
0.4	5.025	2.5	1.704	1.6	0.523	1.0	0.178	0.6	0.060	0.4	0.020	0.2	0.009	0.2	0.004	0.1	0.001	0.1	0.001	0.1		
0.5	7.536	3.1	2.545	2.0	0.779	1.2	0.264	0.8	0.088	0.5	0.029	0.3	0.013	0.2	0.005	0.2	0.002	0.1	0.001	0.1		
0.6	10.514	3.7	3.538	2.4	1.079	1.4	0.365	0.9	0.122	0.6	0.041	0.4	0.018	0.3	0.008	0.2	0.003	0.1	0.002	0.1		
0.7			4.681	2.8	1.424	1.7	0.481	1.1	0.160	0.7	0.053	0.4	0.023	0.3	0.010	0.2	0.004	0.1	0.002	0.1	0.001	0.1
0.8			5.971	3.1	1.811	1.9	0.611	1.2	0.203	0.8	0.067	0.5	0.029	0.4	0.012	0.2	0.005	0.2	0.003	0.1	0.001	0.1
0.9			7.406	3.5	2.241	2.2	0.754	1.4	0.251	0.9	0.083	0.6	0.036	0.4	0.015	0.3	0.006	0.2	0.003	0.1	0.001	0.1
1.0			8.986	3.9	2.713	2.4	0.912	1.5	0.303	1.0	0.100	0.6	0.044	0.4	0.018	0.3	0.007	0.2	0.004	0.2	0.001	0.1

_	20 M	м	25 M	м	32 M	м	40 M	M	50 M	м	63 M	м	75 M	м	90 N	ım	110 n	им	125 N	ım	160 N	лм
Q	R	V	R	V	R	٧	R	v	R	٧	R	v	R	v	R	٧	R	v	R	v	R	v
1.2			12.578	4.7	3.782	2.9	1.267	1.8	0.419	1.2	0.138	0.7	0.060	0.5	0.025	0.4	0.010	0.2	0.005	0.2	0.002	0.1
1.4			16.726	5.5	5.013	3.4	1.675	2.2	0.553	1.4	0.182	0.9	0.079	0.6	0.033	0.4	0.013	0.3	0.007	0.2	0.002	0.1
1.6					6.407	3.9	2.135	2.5	0.704	1.6	0.231	1.0	0.101	0.7	0.042	0.5	0.016	0.3	0.009	0.3	0.003	0.2
1.8					7.959	4.3	2.647	2.8	0.871	1.8	0.285	1.1	0.124	0.8	0.052	0.5	0.020	0.4	0.010	0.3	0.003	0.2
2.0					9.670	4.8	3.209	3.1	1.054	2.0	0.345	1.2	0.150	0.9	0.063	0.6	0.024	0.4	0.013	0.3	0.004	0.2
2.2					11.539	5.3	3.822	3.4	1.253	2.1	0.410	1.4	0.178	1.0	0.074	0.7	0.028	0.4	0.015	0.3	0.005	0.2
2.4					13.564	5.8	4.485	3.7	1.468	2.3	0.479	1.5	0.208	1.0	0.087	0.7	0.033	0.5	0.017	0.4	0.005	0.2
2.6					15.745	6.3	5.198	4.0	1.699	2.5	0.554	1.6	0.240	1.1	0.100	0.8	0.038	0.5	0.020	0.4	0.006	0.3
2.8					18.082	6.7	5.960	4.3	1.946	2.7	0.633	1.7	0.275	1.2	0.114	0.8	0.043	0.6	0.023	0.4	0.007	0.3
3.0							6.771	4.6	2.208	2.9	0.718	1.8	0.311	1.3	0.129	0.9	0.049	0.6	0.026	0.5	0.008	0.3
3.2							7.631	4.9	2.485	3.1	0.807	2.0	0.350	1.4	0.145	1.0	0.055	0.6	0.029	0.5	0.009	0.3
3.4							8.539	5.2	2.777	3.3	0.901	2.1	0.390	1.5	0.162	1.0	0.061	0.7	0.032	0.5	0.010	0.3
3.6							9.497	5.5	3.085	3.5	1.000	2.2	0.433	1.6	0.180	1.1	0.068	0.7	0.036	0.6	0.011	0.3
3.8							10.502	5.8	3.408	3.7	1.104	2.3	0.477	1.7	0.198	1.2	0.075	0.8	0.040	0.6	0.012	0.4
4.0							11.556	6.1	3.746	4.0	1.212	2.5	0.524	1.7	0.217	1.2	0.082	0.8	0.043	0.6	0.013	0.4
4.2							12.658	6.5	4.100	4.1	1.325	2.6	0.572	1.8	0.237	1.3	0.089	0.8	0.047	0.7	0.014	0.4
4.4							13.809	6.8	4.468	4.3	1.443	2.7	0.623	1.9	0.258	1.3	0.097	0.9	0.051	0.7	0.016	0.4
4.6							15.007	7.1	4.851	4.5	1.566	2.8	0.675	2.0	0.280	1.4	0.105	0.9	0.056	0.7	0.017	0.4
4.8							16.253	7.4	5.249	4.7	1.693	2.9	0.730	2.1	0.302	1.5	0.114	1.0	0.060	0.7	0.018	0.5
5.0							17.547	7.7	5.662	4.9	1.825	3.1	0.786	2.2	0.325	1.5	0.122	1.0	0.065	0.8	0.020	0.5
5.2							18.889	8.0	6.089	5.1	1.961	3.2	0.844	2.3	0.349	1.6	0.131	1.0	0.069	0.8	0.021	0.5
5.4									6.532	5.3	2.102	3.3	0.905	2.3	0.374	1.6	0.140	1.1	0.074	0.8	0.023	0.5
5.6									6.989	5.4	2.248	3.4	0.967	2.4	0.400	1.7	0.150	1.1	0.079	0.9	0.024	0.5
5.8									7.461	5.6	2.398	3.6	1.031	2.5	0.426	1.8	0.160	1.2	0.085	0.9	0.026	0.6
6.0									7.948	5.6	2.552	3.7	1.097	2.6	0.453	1.8	0.170	1.2	0.090	0.9	0.027	0.6
6.2									8.450	6.0	2.712	3.8	1.165	2.7	0.481	1.9	0.180	1.3	0.095	1.0	0.029	0.6
6.4									8.966	6.2	2.876	3.9	1.235	2.8	0.510	1.9	0.191	1.3	0.101	1.0	0.031	0.6
6.6									9.497	6.4	3.044	4.0	1.307	2.9	0.539	2.0	0.202	1.3	0.107	1.0	0.033	0.6
6.8									10.042	6.6	3.217	4.2	1.380	3.0	0.569	2.1	0.213	1.4	0.113	1.1	0.034	0.6
7.0									10.602	6.8	3.394	4.3	1.456	3.0	0.600	2.1	0.225	1.4	0.119	1.1	0.036	0.7
7.5									12.066	7.3	3.857	4.6	1.653	3.3	0.681	2.3	0.255	1.5	0.134	1.2	0.041	0.7
8.0									13.621	7.8	4.348	4.9	1.862	3.5	0.766	2.4	0.286	1.6	0.151	1.2	0.046	0.8
9.0									17.068	8.7	5.414	5.5	2.314	3.9	0.951	2.7	0.355	1.8	0.187	1.4	0.057	0.9
10.0									20.818	9.7	6.591	6.1	2.813	4.3	1.155	3.0	0.430	2.0	0.227	1.5	0.069	0.9
12.0									29.278	11.7	9.064	7.3	3.870	5.2	1.566	3.6	0.592	2.4	0.316	1.9	0.096	1.1

	П	оте			іия и р : SDR 7				•	-				-	-	-	-		стема	ЭX		
					ій вес:					_			-		-)			
	20 мі	И	25 M	M	32 M	M	40 N	ıM	50 M	M	63 M	M	75 n	ΛM	90 n	ΛМ	110	мм	125 ı	MM	160 n	MM
Q	R	V	R	V	R	٧	R	V	R	V	R	٧	R	V	R	V	R	V	R	V	R	V
0.01	0.007 0.1 0.002 0.1																					
0.02	0.021	0.1	0.007	0.1	0.002	0.1																
0.03	0.043	0.2	0.015	0.1	0.004	0.1	0.002	0.1														
0.04	0.070	0.3	0.024	0.2	0.007	0.1	0.003	0.1														
0.05	0.104	0.3	0.036	0.2	0.011	0.1	0.004	0.1	0.001	0.1												
0.06	0.143	0.4	0.049	0.2	0.015	0.1	0.005	0.1	0.002	0.1												
0.07	0.187	0.4	0.064	0.3	0.019	0.2	0.007	0.1	0.002	0.1												
0.08	0.237	0.5	0.081	0.3	0.024	0.2	0.008	0.1	0.003	0.1	0.001	0.1										

_	20 m	Л	25 M	M	32 M	M	40 M	M	50 M	M	63 N	M	75 N	ım	90 N	1M	110 /	MM	125 r	мм	160 n	MM
Q	R	V	R	٧	R	V	R	٧	R	v	R	٧	R	٧	R	v	R	v	R	v	R	v
0.09	0.292	0.6	0.100	0.4	0.030	0.2	0.010	0.1	0.004	0.1	0.001	0.1										
0.1	0.352	0.6	0.120	0.4	0.036	0.2	0.012	0.2	0.004	0.1	0.001	0.1										
0.12	0.487	0.7	0.166	0.5	0.049	0.3	0.017	0.2	0.006	0.1	0.002	0.1	0.001	0.1								
0.16	0.816	1.0	0.277	0.6	0.082	0.4	0.028	0.2	0.010	0.2	0.003	0.1	0.001	0.1	0.001	0.1						
0.18	1.010	1.1	0.343	0.7	0.101	0.4	0.035	0.3	0.012	0.2	0.004	0.1	0.002	0.1	0.001	0.1						
0.2	1.222	1.2	0.414	0.8	0.122	0.5	0.042	0.3	0.014	0.2	0.005	0.1	0.002	0.1	0.001	0.1						
0.3	2.560	1.8	0.860	1.2	0.251	0.7	0.086	0.5	0.030	0.3	0.010	0.2	0.004	0.1	0.002	0.1	0.001	0.1				
0.4	4.349	2.5	1.453	1.6	0.422	1.0	0.143	0.6	0.049	0.4	0.016	0.2	0.007	0.2	0.003	0.1	0.001	0.1	0.001	0.1		
0.5	6.582	3.1	2.188	2.0	0.633	1.2	0.214	0.8	0.073	0.5	0.024	0.3	0.010	0.2	0.004	0.2	0.002	0.1	0.001	0.1		
0.6	9.254	3.7	3.064	2.4	0.882	1.4	0.298	0.9	0.102	0.6	0.033	0.4	0.014	0.3	0.006	0.2	0.002	0.1	0.001	0.1		
0.7	12.362	4.3	4.078	2.8	1.170	1.7	0.394	1.1	0.134	0.7	0.043	0.4	0.019	0.3	0.008	0.2	0.003	0.1	0.002	0.1	0.001	0.1
0.8	15.904	4.9	5.230	3.1	1.496	1.9	0.502	1.2	0.171	0.8	0.055	0.5	0.024	0.3	0.010	0.2	0.004	0.2	0.002	0.1	0.001	0.1
0.9	19.878	5.5	6.519	3.5	1.859	2.1	0.623	1.4	0.212	0.9	0.068	0.6	0.030	0.4	0.012	0.3	0.005	0.2	0.003	0.1	0.001	0.1
1.0	24.284	6.1	7.944	3.9	2.259	2.4	0.755	1.5	0.256	1.0	0.082	0.6	0.036	0.4	0.015	0.3	0.006	0.2	0.003	0.2	0.001	0.1
1.2	34.386	7.4	11.200	4.7	3.170	2.8	1.056	1.8	0.357	1.2	0.114	0.7	0.050	0.5	0.020	0.4	0.008	0.2	0.004	0.2	0.001	0.1
1.4	46.205	8.6	14.997	5.5	4.227	3.3	1.404	2.1	0.474	1.4	0.151	0.9	0.066	0.6	0.027	0.4	0.010	0.3	0.006	0.2	0.002	0.1
1.6	59.740	9.8	19.332	6.3	5.430	3.8	1.798	2.4	0.605	1.6	0.192	1.0	0.083	0.7	0.034	0.5	0.013	0.3	0.007	0.3	0.002	0.2
1.8	74.988	11.1	24.205	7.1	6.778	4.3	2.238	2.7	0.752	1.8	0.238	1.1	0.103	0.8	0.042	0.5	0.016	0.4	0.009	0.3	0.003	0.2
2.0	91.948	12.3	29.613	7.9	8.269	4.7	2.725	3.0	0.913	1.9	0.289	1.2	0.125	0.9	0.051	0.6	0.020	0.4	0.011	0.3	0.003	0.2
2.2	110.620	13.5	35.557	8.7	9.905	5.2	3.257	3.3	1.089	2.1	0.344	1.3	0.149	1.0	0.061	0.7	0.023	0.4	0.013	0.3	0.004	0.2
2.4	131.001	14.7	42.036	9.4	11.684	5.7	3.834	3.6	1.280	2.3	0.404	1.5	0.174	1.0	0.071	0.7	0.027	0.5	0.015	0.4	0.004	0.2
2.6	153.092	16.0	49.049	10.2	13.606	6.2	4.457	4.0	1.485	2.5	0.468	1.6	0.202	1.1	0.083	0.8	0.032	0.5	0.017	0.4	0.005	0.3
2.8	176.893	17.2	56.597	11.0	15.672	6.6	5.125	4.2	1.705	2.7	0.536	1.7	0.231	1.2	0.094	0.8	0.036	0.6	0.019	0.4	0.006	0.3
3.0	202.403	18.4	64.679	11.8	17.880	7.1	5.838	4.5	1.939	2.9	0.609	1.8	0.262	1.3	0.107	0.9	0.041	0.6	0.022	0.5	0.007	0.3
3.2	229.622	19.7	73.295	12.6	20.231	7.6	6.596	4.8	2.188	3.1	0.686	1.9	0.295	1.4	0.120	1.0	0.046	0.6	0.025	0.5	0.007	0.3
3.4	258.549	20.9	82.444	13.4	22.725	8.0	7.399	5.2	2.451	3.3	0.767	2.1	0.330	1.5	0.135	1.0	0.051	0.7	0.027	0.5	0.008	0.3
3.6	289.185	22.1	92.127	14.2	25.361	8.5	8.247	5.5	2.729	3.5	0.853	2.2	0.367	1.6	0.149	1.1	0.057	0.7	0.030	0.6	0.009	0.3
3.8	321.530	23.3	102.343	14.9	28.140	9.0	9.140	5.8	2.021	3.7	0.943	2.3	0.405	1.6	0.165	1.1	0.063	0.8	0.034	0.6	0.010	0.4
4.0	355.583	24.6	113.093	15.7	31.061	9.5	10.078	6.1	3.327	3.9	1.038	2.4	0.445	1.7	0.181	1.2	0.069	0.8	0.037	0.6	0.011	0.4
4.2	391.344	25.8	124.375	16.5	34.124	9.9	11.060	6.4	3.647	4.1	1.137	2.6	0.488	1.8	0.198	1.3	0.075	0.8	0.040	0.7	0.012	0.4
4.4	428.814	27.0	136.191	17.3	37.330	10.4	12.087	6.7	3.928	4.3	1.240	2.7	0.531	1.9	0.216	1.3	0.082	0.9	0.044	0.7	0.013	0.4
4.6	467.991	28.3	148.540	18.1	40.678	10.9	13.159	7.0	4.331										0.047			\vdash
4.8	508.877	29.5	161.423	18.9	44.168	11.4	14.275	7.3	4.694	4.7	1.458	2.9	0.624	2.1	0.253	1.4	0.096	1.0	0.051	0.7	0.016	0.5
5.0	551.470	30.7	174.838	19.7	47.800	11.8	15.436	7.6	5.071										0.055			\vdash
5.2	595.772	31.9	188.786	20.4	51.574	12.3	16.642	7.9	5.462	5.1	1.694	3.2	0.724	2.2	0.293	1.6	0.111	1.0	0.059	0.8	0.018	0.5
5.4	641.782	33.2	203.267	21.2	55.490	12.8	17.892	8.2	5.868	5.3	1.818	3.3	0.777	2.3	0.315	1.6	0.119	1.1	0.064	0.8	0.019	0.5
5.6	689.499	34.4	218.282	22.0	59.549	13.3	19.187	8.5	6.288	5.4	1.947	3.4	0.831	2.4	0/336	1.7	0.127	1.1	0.068	0.9	0.021	0.5
5.8	738.925	35.6	233.829	22.8	63.749	13.7	20.526	8.8	6.721										0.072			\vdash
6.0	790.058	36.8	249.908	23.6	68.092	14.2	21.910	9.1	7.169										0.077			\vdash
6.2	842.899								7.632										0.082			\vdash
6.4	897.448								8.108			_							0.087			\vdash
6.6	953.705									_				_					0.092			\vdash
	1011.669																		0.097			\vdash
-	1071.342																		0.102			\vdash
\vdash	1227.994																					\vdash
	1395.320																					\vdash
	1761.993																				-	\vdash
10.0					184.746														1			\vdash
12.0					264.353																	\vdash
			20.041	.,.2			5554	-0.2			5.200		J. 137				5.521		15.275	1 5	15.555	

Потери давления и расчетная скорость протекания в трубопроводных системах Fusitek SDR6, в зависимости от расхода при температуре 60° C (удельный вес: 983.20 кг/м^3 , кинетическая вязкость: $0.47 \times 10^{-6} \text{ m}^2/\text{c}$)

	20 MA		дельны 25 мл		32 MI		40 m	-	50 M	-	63 M		75 N		90 N	1M	110 n	νм
Q	R	V	R	V	R	v	R	V	R	٧	R	V	R	V	R	V	R	v
0.01	0.010	0.1	0.003	0.1														П
0.02	0.032	0.2	0.011	0.1	0.003	0.1												\Box
0.03	0.064	0.2	0.022	0.1	0.007	0.1	0.002	0.1										\Box
0.04	0.106	0.3	0.036	0.2	0.011	0.1	0.004	0.1	0.001	0.1								\vdash
0.05	0.157	0.4	0.053	0.2	0.016	0.1	0.006	0.1	0.002	0.1								\vdash
0.06	0.216	0.4	0.072	0.3	0.023	0.2	0.008	0.1	0.003	0.1								
0.07	0.284	0.5	0.095	0.3	0.030	0.2	0.010	0.1	0.003	0.1	0.001	0.1						\vdash
0.08	0.360	0.6	0.120	0.4	0.037	0.2	0.013	0.1	0.004	0.1	0.001	0.1						\vdash
0.09	0.443	0.7	0.147	0.4	0.046	0.3	0.016	0.2	0.005	0.1	0.002	0.1	0.001	0.1				\vdash
0.1	0.535	0.7	0.178	0.5	0.055	0.3	0.019	0.2	0.006	0.1	0.002	0.1	0.001	0.1				\vdash
0.12	0.742	0.9	0.245	0.6	0.076	0.3	0.026	0.2	0.009	0.1	0.003	0.1	0.001	0.1				\vdash
0.16	1.246	1.2	0.410	0.7	0.126	0.5	0.043	0.3	0.014	0.2	0.005	0.1	0.002	0.1	0.001	0.1		
0.18	1.542	1.3	0.507	0.8	0.156	0.5	0.052	0.3	0.014	0.2	0.006	0.1	0.003	0.1	0.001	0.1		
0.2	1.868	1.5	0.612	0.9	0.188	0.6	0.063	0.4	0.021	0.2	0.007	0.1	0.003	0.1	0.001	0.1	0.001	0.1
0.2	3.926	2.2	1.277	1.4	0.389	0.9	0.130	0.4	0.021	0.2	0.007	0.1	0.003	0.1	0.001	0.1	0.001	0.1
0.4	6.687	2.9	2.161	1.9	0.654	1.1	0.218	0.7	0.073	0.5	0.024	0.2	0.011	0.2	0.004	0.1	0.001	0.1
0.4	10.142	3.7	3.259	2.3	0.982	1.4	0.326	0.7	0.108	0.5	0.024	0.3	0.011	0.2	0.004	0.1	0.002	0.1
0.6	14.283	4.4	4.570	2.8	1.371	1.7	0.453	1.1	0.150	0.7	0.050	0.4	0.022	0.3	0.007	0.2	0.002	0.1
0.7	19.108	5.1	6.091	3.2	1.821	2.0	0.600	1.3	0.199	0.7	0.066	0.4	0.022	0.3	0.003	0.2	0.005	0.1
0.7	24.613	5.9	7.820	3.7	2.330	2.3	0.766	1.4	0.133	0.8	0.000	0.5	0.028	0.4	0.012	0.3	0.003	0.2
0.8	30.797	6.6	9.757	4.2	2.898	2.5	0.766	1.6	0.233	1.0	0.083	0.6	0.036	0.4	0.013	0.3	0.006	0.2
1.0	37.659	7.3	11.900	4.6	3.525	2.8	1.153	1.8	0.313	1.1	0.105	0.7	0.044	0.5	0.019	0.3	-	0.2
\vdash						3.4		2.2								0.4		0.2
1.2	53.411	8.8	16.805	5.5 6.5	4.955		1.614	2.2	0.529	1.4	0.174	1.0	0.075	0.6	0.031	0.4	0.012	0.3
1.4	71.865	10.2	22.531		6.618	4.0	2.148	 	0.702	1.6	0.230		0.099		0.041	0.5	0.015	
1.6	93.018	11.7	29.076	7.4	8.511		2.755	2.9	0.898	1.8	0.293	1.2	0.126	0.8	0.052		0.020	0.4
1.8	116.867	13.2	36.439 44.618	8.3	10.635	5.1	3.433	3.2	1.116	2.1	0.363	1.3	0.156	0.9	0.064	0.6	0.024	0.4
2.0	143.411	14.6		9.2	12.989	5.7	4.182	3.6	1.356	2.3	0.441	1.4	0.188	1.0	0.078	0.7	0.029	0.5
2.2	172.649	16.1	53.614	10.2	15.572	6.2	5.003	4.0	1.619	2.5		1.6	0.224	1.1	0.093	0.8	0.035	+
2.4	204.580	17.5	63.424	11.1	18.383	6.8	5.895	4.3	1.904	2.7	0.617	1.7	0.263	1.2	0.108	0.9	0.041	
2.6	239.204	19.0	74.050	12.0	21.424	7.4	6.857	4.7	2.211	3.0	0.715	1.9	0.305	1.3	0.125	0.9	0.047	0.6
2.8	276.520	20.5	85.490	12.9	24.692	7.9	7.890	5.0	2.539	3.2	0.820	2.0	0.349	1.4	0.143	1.0	0.054	0.7
3.0	316.529	21.9	97.744	13.9	28.188	8.5	8.993	5.4	2.890	3.4	0.932	2.2	0.396	1.5	0.163	1.1	0.061	0.7
3.2	359.229	23.4	110.812	14.8	31.913	9.1	10.166	5.8	3.262	3.7	1.050	2.3	0.446	1.6	0.183	1.1	0.069	0.8
3.4	404.621	24.9	124.694	15.7	35.865	9.6	11.410	6.1	3.656	3.9	1.176	2.5	0.499	1.7	0.205	1.2	0.077	0.8
3.6	452.704	26.3	139.389	16.6	40.045	10.2	12.724	6.5	4.072	4.1	1.308	2.6	0.554	1.8	0.227	1.3		0.9
3.8	503.479	27.8	154.898	17.6	44.452	10.8	14.108	6.8	4.510	4.3	1.446	2.7	0.613	1.9	0.251	1.3	0.094	0.9
4.0	556.945	29.2	171.221	18.5	49.087	11.3	15.562	7.2	4.969	4.6	1.592	2.9	0.674	2.0	0.276	1.4		1.0
4.2	613.102	30.7	188.357	19.4	53.949	11.9	17.086	7.6	5.449	4.8	1.744	3.0	0.738	2.1	0.302	1.5	0.113	1.0
4.4	671.950	32.2	206.306	20.3	59.039	12.5	18.680	7.9	5.951	5.0	1.903	3.2	0.804	2.2	0.329	1.6	0.123	1.0
4.6	733.489	33.6	225.069	21.3	64.356	13.0	20.344	8.3	6.475	5.3	2.068	3.3	0.874	2.3	0.357	1.6	0.133	1.1
4.8	797.719	35.1	244.645	22.2	69.900	13.6	22.078	8.6	7.020	5.5	2.240	3.5	0.946	2.4	0.386	1.7	0.144	1.1
5.0	864.640	36.5	265.034	23.1	75.672	14.2	23.881	9.0	7.587	5.7	2.419	3.6	1.020	2.6	0.416	1.8	0.155	1.2
5.2	934.251	38.0	286.236	24.0	81.670	14.7	25.755	9.4	8.175	5.9	2.604	3.8	1.098	2.7	0.448	1.8	0.167	1.2
5.4	1006.554	39.5	308.251	25.0	87.896	15.3	27.698	9.7	8.785	6.2	2.796	3.9	1.178	2.8	0.480	1.9	0.179	1.3

	20 MM	١	25 MM	٩	32 M	И	40 m	M	50 M	M	63 M	м	75 N	ım	90 N	ıw	110 N	ΛM
Q	R	٧	R	V	R	٧	R	V	R	V	R	٧	R	٧	R	٧	R	٧
5.6	1081.547	40.9	331.079	25.9	94.349	15.9	29.711	10.1	9.416	6.4	2.994	4.0	1.261	2.9	0.513	2.0	0.191	1.3
5.8	1159.231	42.4	354.720	26.8	101.029	16.4	31.794	10.4	10.068	6.6	3.199	4.2	1.346	3.0	0.548	2.1	0.204	1.4
6.0	1239.606	43.8	379.175	27.7	107.936	17.0	33.946	10.8	10.742	6.9	3.411	4.3	1.435	3.1	0.584	2.1	0.217	1.4
6.2	1322.672	45.3	404.442	28.7	115.070	17.6	36.169	11.2	11.438	7.1	3.692	4.5	1.526	3.2	0.620	2.2	0.231	1.5
6.4	1408.428	46.8	430.522	30.0	122.432	18.1	38.461	11.5	12.154	7.3	3.853	4.6	1.619	3.3	0.658	2.3	0.245	1.5
6.6	1496.875	48.2	457.415	30.5	130.020	18.7	40.822	11.9	12.893	7.5	4.085	4.8	1.715	3.4	0.697	2.3	0.259	1.6
6.8	1588.012	49.7	485.121	31.4	137.835	19.3	43.254	12.2	13.652	7.8	4.322	4.9	1.814	3.5	0.737	2.4	0.274	1.6
7.0	1618.840	51.2	513.640	32.3	145.878	19.8	45.754	12.6	14.433	8.0	4.567	5.1	1.916	3.6	0.777	2.5	0.289	1.7
7.5	1928.182	54.8	588.494	34.7	166.977	21.3	52.312	13.5	16.479	8.6	5.206	5.4	2.182	3.8	0.884	2.7	0.328	1.8
8.0	2191.341	58.5	668.429	37.0	189.494	22.7	59.304	14.4	18.658	9.1	5.886	5.8	2.464	4.1	0.998	2.8	0.370	1.9
9.0	2768.107	65.8	843.539	41.6	238.785	25.6	74.595	16.2	23.416	10.3	7.369	6.5	3.079	4.6	1.244	3.2	0.460	2.1
10.0			1038.970	46.2	293.748	28.3	91.625	18.0	28.708	11.4	9.015	7.2	3.760	5.1	1.516	3.5	0.560	2.4
12.0			1490.794	55.5	420.695	34.0	130.905	21.6	40.888	13.7	12.792	8.7	5.320	5.3	2.139	4.2	0.787	2.8

Расчетный расход воды при обычном отборе в системах питьевого водоснабжения

Таблица 16

Мин. давление			Расчетный расход	ц при водоразборе, V _R , л/сек:
потока, Р _{тіп} , бар	Вид точки отбора воды		Смешанная вода [*]	Только холодная или только горячая вода
0,5	Водоразборный кран без аэратора	DN15	-	0,30
0,5	без аэратора	DN20	-	0,50
0,5	без аэратора	DN25	-	1,00
1,0	с аэратором	DN10	-	0,15
1,0	с аэратором	DN15	-	0,15
1,0	Душевая сетка	DN15	0,10	0,20
1,2	Напорный вентиль	DN15	-	0,70
1,2	Напорный вентиль	DN20	-	1,00
0,4	Напорный вентиль	DN25	-	1,00
1,0	Сливное устройство для писсуара	DN15	-	0,30
1,0	Посудомоечная машина	DN15	-	0,15
1,0	Стиральная машина	DN15	-	0,25
	Смесительная арматура для:			
1,0	душевой кабины	DN15	0,15	
1,0	ванны	DN15	0,15	
1,0	кухонной раковины	DN15	0,07	
1,0	умывальников	DN15	0,07	
1,0	биде	DN15	0,07	
1,0	смесительная арматура	DN20	0,30	
0,5	сливной бачок	DN15	-	0,13
1,0	Электрокипятильник для воды	DN15	-	0,10**

Примечание: для водоразборных точек и других схожих приборов, которые не указаны в данной таблице, расчеты следует учитывать согласно данным изготовителя.

^{*} Для расчетов смешанной воды за основу берутся холодная питьевая вода с температурой 15°C и нагретая питьевая вода с температурой 60°C.

^{**} При полностью открытом дроссельном винте.

Значения коэффициента местных сопротивлений ξ для фитингов и запорной арматуры системы Fusitek ΠΠΡ

Таблица 17

				таолица 17
Деталь		Графическое изображение	Примечание	Коэффициент сопротивления ξ
			Разделение потока	1.8
Тройник	100		Соединение встречных потоков	4.2
равносторонний			Соединение потоков	1.3
		₩	Разделение разнонаправленных потоков	2.2
			Разделение потока	3.6
Тройник	100		Соединение встречных потоков	9.0
переходной			Соединение потоков	2.6
		=	Разделение разнонаправленных потоков	5.0
Уголок 90°	0			2.0
Уголок 45°	9			0.6
Муфта равносторонняя				0.25
			Уменьшение диаметра на 1 размер	0.4
	-		на 2 размера	0.5
Муфта переходная			на 3 размера	0.6
переходнал			на 4 размера	0.7
			на 5 размеров	0.8
			на 6 размеров	0.9
Тройник комбинированный ВР	00			1.4-1.8
Тройник комбинированный НР	6			1.8
Уголок 90° комбинированный ВР	0			1.4
Уголок 90° комбинированный НР	a			1.6
Муфта комбинированная ВР	0			0.5
Муфта комбинированная НР				0.85
Муфта с накидной гайкой	0)			8.3

Значение потери напора определяется по следующей формуле: $Z=\xi V^2\delta/2$

- **Z** потеря давления (Па)
- **ξ** коэффициент потерь для фасонных изделий
- **V** скорость течения (м/с)
- δ плотность протекающей среды (кг/м²)

Химическая устойчивость полипропилена

Таблица химической устойчивости полипропилена, приведенная далее, объединяет полученные в результате опытных испытаний данные из различных таблиц, используемых в настоящее время во многих странах.

Источник: ISO/TR 10358

Таблица содержит данные о химической устойчивости полипропилена к ряду жидкостей, считающихся агрессивными или не агрессивными по отношению к полипропилену.

Область применения

Таблица содержит показатели химической устойчивости полипропилена к более чем 180 жидкостям и дает общие рекомендации по возможному использованию полипропиленовых труб для транспортировки данных жидкостей:

- при температуре 20°C, 60°C и 100°C
- при отсутствии внутреннего давления и внешнего механического воздействия

Определения, символы и аббревиатуры

В таблице используются следующие критерии классификации, определения и аббревиатуры:

S = Удовлетворительная

Химическая устойчивость полипропилена к воздействию жидкостей классифицируется как «удовлетворительная», когда результаты испытаний признаются «удовлетворительными» большинством стран, принимающих участие в испытаниях.

L = Ограниченная

Химическая устойчивость полипропилена к воздействию жидкостей классифицируется как «ограниченная», когда результаты испытаний признаются «ограниченными» большинством стран, принимающих участие в испытаниях.

NS = Неудовлетворительная

Химическая устойчивость полипропилена к воздействию жидкостей классифицируется как «неудовлетворительная», когда результаты испытаний признаются «неудовлетворительными» большинством стран, принимающих участие в испытаниях.

Sat. sol насыщенный водяной раствор, изготовленный при 20°C

Sol водяной раствор с концентрацией более 10%, но ненасыщенный

Dil. sol разбавленный водяной раствор с концентрацией, равной или менее 10% **Work. sol** водяной раствор с концентрацией, обычно применяемой в промышленности

Химическая усто	йчивость полипропи	ілена		
Агрессивная среда	Концентрация	20°C	60°C	100°C
Уксусная кислота	до 40%	S	S	
Уксусная кислота	50%	S	S	L
Уксусная кислота, ледяная	>96%	S	L	NS
Уксусный ангидрид	100%	S		
Ацетон	100%	S		
Ацетофенон	100%	S	L	
Акрилонитрил	100%	S		
Воздух		S	S	S
Аллиловый спирт	100%	S	S	
Миндальное масло		S		

		1	1	1
Квасцы	Sol	S	S	
Аммиак, вода	Sat.sol	S	S	
Аммиак, сухой газ	100%	S		
Аммиак, жидкий	100%	S		
Ацетат аммония	Sat.sol	S	S	
Хлорид аммония	Sat.sol	S	S	
Фторид аммония	до 20%	S	S	
Кислый углекислый аммоний	Sat.sol	S	S	
Метафосфат аммония	Sat.sol	S	S	S
Нитрат аммония	Sat.sol	S	S	S
Персульфат аммония	Sat.sol	S	S	
Фосфат аммония	Sat.sol	S		
Сульфат аммония	Sat.sol	S	S	S
Сульфид аммония	Sat.sol	S	S	
Амилацетат	100%	L		
Амиловый спирт	100%	S	S	S
Анилин	100%	S	S	
Яблочный сок		S		
Царская водка	HCI/HN0=3/1	NS	NS	NS
Бромид бария	Sat.sol	S	S	S
Карбонат бария	Sat.sol	S	S	
Хлорид бария	Sat.sol	S	S	L
Гидроксид бария	Sat.sol	S	S	S
Сульфид бария	Sat.sol	S	S	S
Ливо		S	S	
Бензол	100%	L	NS	NS
Бензойная кислота	Sat.sol	S	S	
Бензиловый спирт	100%	S	L	
Пироборнокислый натрий, бура	Sol	S	S	
Борная кислота	Sat.sol	S		
Трехфтористый бор	Sat.sol	S		
Бром, газ	341.301	NS	NS	NS
Бром, жидкий	100%	NS	NS	NS
Бутан, газ	100%	S	113	145
Бутанол	100%	S	L	L
Бутил ацетат	100%	L	NS	NS
Бутил ацетат	100%	S	INO	IVO
Бутил гликоль	Sat.sol	S		
	100%	S	ı	ı
Бутил		+	L	L
Карбонат кальция, мел	Sat.sol	S	S	S
Хлорат кальция	Sat.sol		S	
Хлорид кальция	Sat.sol	S	S	S
Гидроксид кальция	Sat.sol	S	S	S
Гипохлорит кальция	Sol	S		

Cataal			
Sat.Soi			NC
			NS
4000/	+		NC
100%	+		NS
1000		_	
			NS
	+		L
	NS	NS	NS
100%	NS	NS	NS
Sol	S		
100%	S		
100%	L	NS	NS
100%	NS	NS	NS
Sol	S	S	
до 40%	S	L	NS
Sat.sol	S	S	S
	S		
Sat.sol	S	S	
Sat.sol	S	S	S
Sat.sol	S	S	
	S	L	
	S	S	
Более 90%	S		
100%	S		
100%	S	L	
100%	L	NS	NS
100%	NS	NS	NS
Sol	S	S	
Sol	S	S	S
100%	S	L	NS
1	+	ı	
+	+		
	+	l	
100/0	+		
1000/	S	S	
100%			
100%	L	L	
	100% 100% 100% Sol До 40% Sat.sol Sat.sol Sat.sol Более 90% 100% 100% 100% 100% 100% 100% 100% 1	NS S S S 100% S 100% NS 100% NS 100% NS 100% NS Sol S 100% NS Sol S A0 40% S Sat.sol S Sat.sol S Sat.sol S Sonee 90% S 100% S	NS NS S S S S 100% S NS NS 100% NS NS NS 100% S L 100% NS NS 100% NS NS NS Sol S 100% NS NS NS Sol S Sol S Sol S Sol S Sat.sol S Sat.sol

Дистиллированная вода	100%	S	S	S
Этаноламин	100%	S		
Этилацетат	100%	L	NS	NS
Этиловый спирт	до 50%	S	S	S
Этилхлорид, газ		NS	NS	NS
Этиленхлорид (моно- и ди-)		L	L	
Этиловый эфир	100%	S	L	
Этиленгликоль	100%	S	S	S
Хлорид железа	Sat.sol	S	S	S
Формальдегид	40%	S		
Муравьиная кислота	10%	S	S	L
Муравьиная кислота, безводная	100%	S	L	L
Фруктоза	Sol		S	S
Фруктовый сок			S	S
Бензин (алифатические углеводороды)	NS	NS	NS	
Желатин		S	S	
Глюкоза	20%	S	S	S
Глицерин	100%	S	S	S
Гликолиевая кислота	30%	S		
Гептан	100%	L	NS	NS
Гексан	100%	S	L	
Бромистоводородная кислота	до 48%	S	L	NS
Хлористоводородная кислота	до 20%	S	S	S
Хлористоводородная кислота	30%	S	L	L
Хлористоводородная кислота	от 35% до 36%	S	_	
Фтороводородная кислота	Dil.sol	S		
Фтороводородная кислота	40%	S		
Водород	100%	S		
Перекись водорода, сухой газ	100%	S	S	
Перекись водорода	до 10%	S		
Перекись водорода	до 30%	S	L	
Сульфид водорода, сухой газ	100%	S	S	
Йод, в спирте		S		
Изооктан	100%	L	NS	NS
Изопропиловый спирт	100%	S	S	S
Изопропиловый эфир			<u> </u>	-
	100%	L		
Молочная кислота	100%		S	
Молочная кислота Ланолин	100% до 90%	S	S	
Ланолин		S S	L	S
Ланолин Льняное масло	до 90%	S S S	L S	S S
Ланолин Льняное масло Карбонат магния	до 90% Sat.sol	S S S	L S S	S S
Ланолин Льняное масло Карбонат магния Хлорид магния	до 90% Sat.sol Sat.sol	S S S S	L S S	S
Ланолин Льняное масло Карбонат магния	до 90% Sat.sol	S S S	L S S	S

		1		·
Хлорид ртути (II)	Sat.sol	S	S	
Цианид ртути (II)	Sat.sol	S	S	
Нитрат ртути (I)	Sol	S	S	
Ртуть	100%		S	S
Метилацетат	100%		S	S
Метанол	5%		S	L
Метиламин	до 32%	S		
Метилбромид	100%	NS	NS	NS
Метилэтилкетон	100%	S		
Метиленхлорид	100%	L	NS	NS
Молоко		S	S	S
Монохлоруксусная кислота	>85%	S	S	
Нафта		S	NS	NS
Хлорид никеля	Sat.sol	S	S	
Нитрат никеля	Sat.sol	S	S	
Сульфат никеля	Sat.sol	S	S	
Азотная кислота	до 30%	S	NS	NS
Азотная кислота	от 40% до 50%	L	NS	NS
Азотная кислота, дымящаяся (с диоксидом азота)		NS	NS	NS
Нитробензол	100%	S	L	
Олеиновая кислота	100%	S	L	
Олеум (серная кислота с 60% SO3)		S	L	
Оливковое масло		S	S	L
Щавелевая кислота	Sat.sol	S	L	NS
Кислород, газ		S		
Парафиновое масло (FL65)		S	L	NS
Ореховое масло		S	S	
Мятное масло		S		
Перхлорная кислота	(2N) 20%	S		
Петролейный эфир (лигроин)	, ,	L	L	
Фенол	5%	S	S	
Фенол	90%	S		
Фосфин, газ		S	S	
Фосфорная кислота	до 85%	S	S	S
Оксихлорид фосфора	100%	L		
Пикриновая кислота	Sat.sol	S		
Бикарбонат калия	Sat.sol	S	S	S
Борат калия	Sat.sol	S	S	
Бромат калия	до 10%	S	S	
Бромид калия	Sat.sol	S	S	
Карбонат калия	Sat.sol	S	S	
·			+	
·		1		
Хлорат калия Хлорид калия	Sat.sol Sat.sol	S S	S S	

			1	1
Хромат калия	Sat.sol	S	S	
Цианид калия	Sol	S	S	
Дихромат калия	Sat.sol	S	S	S
Ферроцианид калия	Sat.sol	S	S	
Фторид калия	Sat.sol	S	S	
Гидроксид калия	до 50%	S	S	S
Йодид калия	Sat.sol	S		
Нитрат калия	Sat.sol	S	S	
Перхлорат калия	10%	S	S	
Перманганат калия	(2N) 30%	S		
Персульфат калия	Sat.sol	S	S	
Сульфат калия	Sat.sol	S	S	
Пропан, газ	100%	S		
Пропановая кислота	>50%	S		
Пиридин	100%	L		
Морская вода		S	S	S
Силиконовое масло		S	S	S
Нитрат серебра	Sat.sol	S	S	L
Ацетат натрия	Sat.sol	S	S	S
Бензоат натрия	35%	S	L	
Бикарбонат натрия	Sat.sol	S	S	S
Карбонат натрия	до 50%	S	S	L
Хлорат натрия	Sat.sol	S	S	
Хлорид натрия	Sat.sol	S	S	
Хлорит натрия	2%	S	L	NS
Хлорид натрия	20%	S	L	NS
Дихромат натрия	Sat.sol	S	S	S
Двууглекислый натрий	Sat.sol	S	S	S
Бисульфат натрия	Sat.sol	S	S	
Бисульфит натрия	Sat.sol	S		
Гидроксид натрия	1%	S	S	S
Гидроксид натрия	от 10 до 60%	S	S	S
Гипохлорит натрия	5%	S	S	
Гипохлорит натрия	10%15%	S		
Гипохлорит натрия	20%	S	L	
Метафосфат натрия	Sol	S	_	
Нитрат натрия	Sat.sol	S	S	
Перборат натрия	Sat.sol	S	S	
Фосфат натрия (нейтральный)	341.301	S	S	S
Силикат натрия	Sol	S	S	
Сульфат натрия, Сернокислый натрий	Sat.sol	S	S	
Сульфид натрия, Сернистый натрий	Sat.sol	S	<u> </u>	
Сульфид натрия, Сернистый натрий	40%	S	S	S
Тиосульфат натрия (гипо)	Sat.sol	S	3	3
тиосульфат натрия (гипо)	Sdt.SUI			

			l
S	L		
Sat.sol	S	S	
до 10%	S	S	S
100%	S	S	
от 10 до 30%	S	S	
50%	S	L	L
96%	S	L	NS
98%	L	NS	NS
до 30%	S		
Sat.sol	S	S	
100%	L	NS	NS
100%	NS	NS	NS
100%	S	L	
Sol	S	S	
Sat.sol	S	S	
100%	L	NS	NS
до 50%	S	S	
100%	NS	NS	NS
Sol	S		
	NS	NS	NS
Sat.sol	S	S	
	S	S	
	S	S	S
	S	S	
	S	S	
100%	NS	NS	NS
Sol	S	S	S
Sat.sol	S	S	S
Sat.sol	S	S	S
	до 10% 100% 0т 10 до 30% 50% 96% 98% до 30% Sat.sol 100% 100% Sol Sat.sol 100% до 50% 100% Sol Sat.sol	Sat.sol S до 10% S 100% S от 10 до 30% S 50% S 96% S 98% L До 30% S Sat.sol S 100% L 100% NS 30l S Sat.sol S 100% NS Sol S 100% NS Sol S Sat.sol S S S 100% NS Sat.sol S Sol S Sol S Sat.sol S	Sat.sol S μο 10% S S S 100% S S S 50% S L 96% S L 98% L L NS До 30% S Sat.sol S Sat.sol S Sol S Sol S Sat.sol S Sol S Sol S Sat.sol S Sat.sol S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

Примечание: Концентрации растворов, приведенные в данной таблице, являются весовыми.

2.6. Контроль качества

Стандарты

Международные стандарты ISO:

EN ISO 15874:2003 Системы пластмассовых трубопроводов для горячего и холодного водоснабжения. Полипропилен (PP).

EN ISO 3126:2005 Системы пластмассовых трубопроводов. Пластмассовые компоненты. Определение размеров.

Россия:

ГОСТ 32415-2013 Трубы напорные из термопластов и соединительные детали к ним для систем водоснабжения и отопления.

ГОСТ ИСО 12162-2006 «Материалы термопластичные для напорных труб и соединительных деталей. Классификация и обозначение. Коэффициент запаса прочности».

ГОСТ 21.601-79 «Водопровод и канализация. Рабочие чертежи».

СП 40-101-96 Проектирование и монтаж трубопроводов из полипропилена «рандомсополимера».

СП 40-102-2000 «Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов».

СНиП 2.04.01 - 85 Внутренний водопровод и канализация зданий.

СНиП 2.04.05 – 91 Отопление, вентиляция и кондиционирование.

СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».

СНиП 31-01-2003 «Здания жилые многоквартирные».

Немецкие стандарты:

DIN 8077 Полипропиленовые трубопроводы. Размеры.

DIN 8078 Полипропиленовые трубопроводы. Общие требования к качеству. Испытания. Химическая устойчивость.

DIN 1988 Технические правила для систем питьевого водоснабжения.

DIN 16962 Соединения для труб и части трубопроводов для напорных трубопроводов из полипропилена.

DIN 4109 Звукоизоляция в строительном секторе. Звукоизоляция в водопроводных трубах.

DIN 18381 Установка систем газоснабжения, водоснабжения и канализации внутри зданий.

DIN 16928 Проектирование соединений и компонентов трубопроводов.

DIN 16960 Сварка термопластов. Принципы.

DIN 2999 Резьба Витворта. Цилиндрическая внутренняя резьба и коническая наружная резьба.

DVS 2203 Тестирование сварки фитингов и труб из термопластов.

DVS 2207 Сварка термопластов.

DVS 2208 Машины и устройства для сварки термопластов.

Другие нормы и стандарты:

DVGW W308 Нормы и требования к трубам, соединительным деталям и методам сборки систем питьевого водоснабжения. EnEg закон об энергоснабжении.

BS 6920 Пригодность неметаллических изделий для использования в контакте с водой, потребляемой людьми, с учетом их влияния на качество воды. (Великобритания)

ENV 12108 Системы пластмассовых трубопроводов. Установка трубопроводов внутри зданий для горячей и холодный воды.

Контроль качества

Вся продукция марки Fusitek® самым тщательным образом контролируется и инспектируется. Контроль и инспектирование осуществляется как самим производителем, так и различными независимыми экспертами и сертифицированными центрами.

Для обеспечения контроля за качеством на предприятии работает современный испытательный центр и лаборатория.

Основные этапы контроля качества:

- входной контроль сырья
- непрерывный производственный контроль
- систематический контроль качества готовой продукции

Гарантия

На полипропиленовые трубы и фитинги системы Fusitek® предоставляется гарантия сроком на 10 лет при условии, если они были установлены и эксплуатировались в рамках присущих им характеристик и в соответствии с инструкциями по монтажу.

Обязательным условием действия гарантии является использование только компонентов системы ППР Fusitek®, а также наличие протокола испытаний (испытание давлением).

2.7. Условия транспортировки и хранения

Транспортировка и хранение

- Хранение полипропиленовых труб должно осуществляться согласно условий 5 (ОЖ4), раздела 10 ГОСТ 15150 в проветриваемых навесах или помещениях.
- Упаковки с трубами разрешается складировать высотой не более 2 м.
- Необходимо защитить трубы от воздействия прямых солнечных лучей.
- Загрузка и выгрузка труб должна осуществляться при температуре выше -10°C. Если транспортирование осуществляется при температуре от -11 до -20°C, то необходимо защитить трубы от механических нагрузок. Транспортировка при температуре ниже -21°C запрещена.
- Трубы и соединительные детали из ППР, доставленные на объект в зимнее время, перед их монтажом в зданиях должны быть предварительно выдержаны при положительной температуре не менее 2 ч.
- Согласно ГОСТ 19433 трубы из ППР не относятся к категории опасных грузов, что разрешает перевозку любым видом транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- При ж/д и автомобильных перевозках упаковки труб допускаются к транспортировке только в крытом подвижном составе.
- Запрещено складировать трубы на расстоянии менее 1 м от нагревательных приборов.
- В пределах участка хранения, а также за его пределами на расстоянии менее 5 м запрещается проведение газоэлектросварочных и других огнеопасных работ.
- Для избежания повреждения труб их следует укладывать на ровную поверхность, без острых выступов и неровностей. Сброс труб с транспортных средств не допускается.
- Согласно ГОСТ 32415-2013 гарантийный срок хранения напорных труб и соединительных деталей, изготовленных из ППР, составляет 3 года со дня их изготовления.

Утилизация

Утилизация изделия производится в порядке, установленном Законами РФ от 22 августа 2004 г. № 122-Ф3 "Об охране атмосферного воздуха", от 10 января 2003 г. № 15-Ф3 "Об отходах производства и потребления", а также другими российскими и региональными нормами, актами, правилами, распоряжениями, принятыми во исполнение указанных законов.

3. МОНТАЖ СИСТЕМЫ

3.1. Термофузионная сварка

Сварочный аппарат и технология сварки

Раструбная термофузионная сварка является самым распространенным способом для соединения полипропиленовых труб и фасонных изделий. Fusitek поставляет как ручные сварочные аппараты, так и сварочные машины с центратором, идеально подходящие для раструбной сварки.

Инструменты, необходимые для сварочного процесса:

- Сварочное устройство для термофузионной раструбной сварки
- Нагревательные насадки с тефлоновым покрытием
- Ножницы или резак, специально предназначенные для резки ППР труб
- Впитывающая бумага (салфетки)
- Технический спирт
- Метр (рулетка)
- Маркер или специальный карандаш
- Нож с коротким и острым лезвием
- Контактный температурный индикатор

Подготовка сварочного аппарата

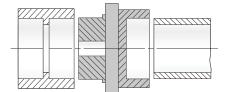
Нагревательные насадки необходимо плотно закрепить к нагревательной панели сварочного аппарата, только после этого возможно осуществлять нагревание. Подключите сварочный аппарат к сети мощностью 220V и дождитесь сигнала лампочки индикации температуры, которая показывает, что достигнута необходимая рабочая температура (260°C±5°C). Перед процессом сварки необходимо удостовериться при помощи контактного температурного индикатора, что температура соответствует требованиям сварки трубопровода из ППР. Охлаждение сварочного аппарата водой запрещается.

Подготовка перед сваркой

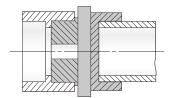
Нагревательные насадки и нагревательная панель сварочного аппарата должны очищаться при помощи специальной впитывающей бумаги (салфеток), эта операция должна повторяться каждый раз перед началом новой сварки. Также необходимо проверять нагревательную поверхность от возможных повреждений.

Отрежьте трубу, срез должен быть строго перпендикулярным, смятие недопустимо, при необходимости удалите заусенцы. Тщательно протрите проспиртованной салфеткой свариваемые части трубы и фитинга, поверхность должна быть обезжирена. При помощи

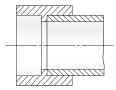
специального карандаша или маркера на трубе следует отметить глубину прогрева, соответствующую глубине раструбной части фитинга аналогичного размера.


Процесс сварки

Одновременно вставьте трубу и фитинг в нагревающие насадки соответствующего размера, согласно данным Таблицы 19 Глубина прогрева трубы и длительность сварочных операций при температуре воздуха 20°С. После нагрева, вытащите трубу и фитинг с насадки и, в соответствии с маркировкой глубины плавления, соедините плавным движением обе детали, избегая осевого вращения.


В период сварки труба и фитинг должны оставаться неподвижными. Сварной шов обязательно должен инспектироваться. Если сваренные компоненты полностью охладились, то соединение готово к использованию.

Примечание: На концах труб, особенно диаметром Ø40 мм и более, рекомендуется снимать фаску под углом 30-45°. С труб большого диаметра в местах соединения рекомендуется также соскабливать окислившийся наружный слой материала толщиной примерно 0.1 мм. Нельзя сваривать трубу и фитинг, которые свободно соединяются в холодном виде. Обязательно проверяйте трубу на овальность, деформированные и поврежденные компоненты необходимо отбраковывать.


Схематический чертеж процесса сварки

Выравнивание и прогрев

Соединение и охлаждение

Этапы сварки

Процесс сварки ППР труб и фитингов

для обрезки

2. Отрежьте трубу

необходимой температуры (должен загореться зеленый индикатор)

Вставьте трубу и фитинг в 4. нагревательные насадки в соответствии с условиями Таблицы 19

Быстро вставьте нагретую трубу в фитинг

корректирование положения допустимо в момент соединения

Процесс сварки композитных труб Fusitek® PPR/Al/PPR с внутренним армированием

4. торцевания трубы, убедитесь, что слой алюминия полностью снят

Настройте лезвие
 торцевателя согласно расположения алюминиевого слоя в трубе

Нагрейте аппарат до необходимой температуры (должен загореться зеленый индикатор)

Вставьте трубу до упора в

торцеватель и проверните

Вставьте трубу и фитинг

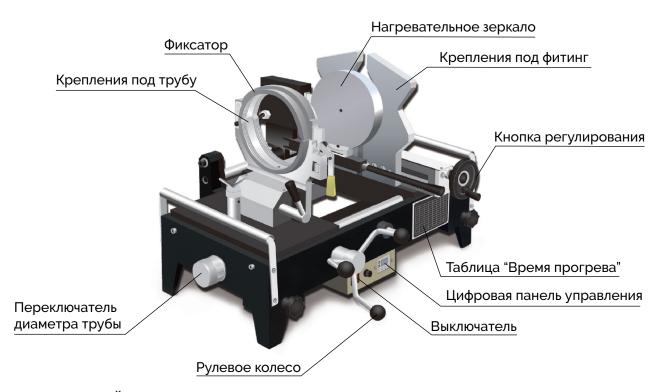
в нагревательные насадки
в соответствии с условиями
Таблицы 19

8. соблюдаться. Небольшое корректирование положения допустимо в момент соединения

Процесс сварки труб Fusitek® Stabi

Процесс сварки труб Fusitek® Stabi аналогичен процессу сварки обычных труб из ППР, дополнительно требуется провести зачистку трубы Stabi перед процессом сварки. Специальный инструмент зачистки необходим для снятия верхнего слоя ППР и слоя алюминия.

Важно


В зоне сварки не должно быть алюминия, перед каждой сваркой необходимо осуществлять визуальную проверку.

Процесс сварки при помощи сварочной машины с центратором

Fusitek® поставляет современные сварочные машины с центратором для раструбной сварки труб и фитингов из ППР, которые специально разработаны для высокоточной сварки труб и фитингов большого диаметра. Детальные инструкции по сварке прилагаются непосредственно к аппарату.

Подготовительный процесс

- 1. Выберите необходимые нагревательные насадки, в соответствии с диаметром трубы и фитинга, закрепите их на сварочном аппарате.
- 2. Крепления под фитинг могут регулироваться, в соответствии с размером фитинга, одна сторона креплений может использоваться для фитингов малого диаметра, а другая сторона может использоваться для фитингов большого диаметра (для этого необходимо развернуть крепления по оси на 180°). Крепление с круговым зажимом используется для закрепления трубы.
- 3. Боковая круглая ручка (переключатель диаметра трубы) используется для фиксирования глубины сварки выбранного диаметра.

Данный переключатель регулирует длину трубы, которая будет вариться в раструб.

- 4. Кнопка регулирования расстояния: удерживайте кнопку регулирования расстояния нажатой для регулирования расстояния между двумя движущими блоками, приблизьте оба движущих блока друг к другу при помощи рулевого колеса до их полной остановки.
- 5. Закрепите трубу при помощи рычага в зажиме так, чтобы она не могла двигаться.

Процесс сварки

1. Закрепите фитинг в креплении для фитинга. Убедитесь, что свариваемая поверхность фитинга и поверхность нагревательной муфты точно совпадают. Зафиксируйте при помощи фиксирующего рычага. Установите трубу в крепление для трубы. Не закрепляйте зажим плотно. Приблизьте оба движущих блока друг к другу при помощи рулевого колеса до их полной остановки, при этом удерживайте кнопку регулирования расстояния нажатой. Теперь труба отрегулирована по глубине сварки, отпустите кнопку регулирования расстояния и закрепите трубу при помощи рычага в зажиме так, чтобы она не могла двигаться.

2. Движущие блоки должны быть разведены в стороны, а нагревательное зеркало должно быть опущено вниз. Убедитесь, что сварочная машина готова к работе. Когда горит зеленая лампочка, это означает, что достигнута необходимая для сварки рабочая температура (убедитесь, что температура нагревательных насадок также 260°C±5°C). Приблизьте оба движущих блока друг к другу при помощи рулевого колеса до их полной остановки. Рекомендуемая температура сварки указана в Таблице 19. Глубина прогрева трубы и длительность сварочных операций при температуре воздуха 20°С. После того, как время нагрева вышло, быстро разведите движущие блоки в стороны и поднимите нагревательное зеркало.

3. Снова сведите движущие блоки вместе так, чтобы труба и фитинг сварились. Не вынимайте сварное соединение и не вращайте рулевое колесо до тех пор, пока полностью не вышло время охлаждения. Рекомендуемая температура охлаждения указана в **Таблице 19**. Глубина прогрева грубы и длительность сварочных операций при температуре воздуха 20°С. После того, как закончится время охлаждения, сварное соединение можно использовать.

Длительность сварочных операций для труб и фитингов Fusitek

Таблица 19

Длительность сварочных операций для труб и фитингов Fusitek при температуре воздуха 20°C					
Диаметр трубы <i>,</i> мм	Глубина плавления, мм	Время нагрева, с	Время сварки, с	Время охлаждения, мин	
20	14	5	4	3	
25	15.5	7	4	3	
32	17	8	6	4	
40	18.5	12	6	4	
50	20.5	18	6	5	
63	24.5	24	8	6	
75	28	30	8	8	
90	31.5	40	8	8	
110	36.5	50	10	10	
125	41	60	11	10	
140	43	70	13	10	
160	46	80	15	15	

Примечание: При температуре наружного воздуха ниже +5°C время нагрева должно быть увеличено примерно на 50%.

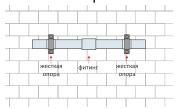
Дефекты сварки трубопровода из ППР враструб

No	Внешний вид	0	
Nº	сварного соединения	Описание дефекта	Причина возникновения дефекта
1	труба фитинг	Неправильное соединение по причине деформации трубы. Овальность или деформация конца трубы или фитинга после сварки	 Превышена допустимая овальность напорной трубы или раструба фитинга; Неправильная фиксация напорной трубы и фитинга; Неисправность зажимного приспособления;
2	X	Неправильное соединение по причине недостаточного вдвига конца трубы в раструб фитинга. Недостаточная глубина сварного шва при полном или частичном проваривании свариваемых поверхностей	 Конец трубы обрезан не под прямым углом; Недостаточное время прогрева; Недостаточная температура нагреваемых насадок; Смещение по оси трубы и фитинга в период охлаждения; Слишком длительное время вдвигания трубы в раструб фитинга после оплавления;
3		Неправильное соединение по причине образование пустот в сварном соединении	 Превышение размеров допусков диаметра трубы или раструба фитинга; Наличие царапин и надрезов на поверхности напорной трубы; Несцентрированность трубы в раструбе детали; Неправильная механическая обработка трубы;
4		Неправильное соединение с недостаточно полным свариванием и с разъединением в плоскости сварки	 Загрязнение свариваемых поверхностей; Загрязнение рабочих поверхностей сменных нагревательных насадок; Термическое повреждение материала; Неправильный подбор свариваемых материалов;
5		Зауженное поперечное сечение напорной трубы в месте сварки	 Превышение усилия вдвига трубы в раструб или превышение усилия сжатия стыка; Сваривание тонкостенной напорной трубы; Превышение времени нагрева материала; Превышение рабочей температуры сварки; Превышенный индекс текучести расплава материала напорной трубы;
6		Наличие чужеродных включений и пористость в шве сварного соединения	 Загрязнение рабочих поверхностей сменных нагревательных насадок; Попадание растворителя или влаги в стык при сварке;
7	300	Угловое отклонение (несоосность свариваемого соединения)	• Ошибка соосности напорной трубы и фитинга при формировании сварного соединения (При монтаже напорного трубопровода разрешается отклонение от оси не более чем на 6 = 0,2%); • Дефект оборудования;
8		Неправильное образование грата при сварке с одной или обеих сторон (точечный или по всей длине шва)	 Превышение температуры сменных нагревательных насадок; Превышение времени нагрева материала; Превышение допусков сварки;
9		Недостаточная высота грата, его отсутствие с одной или с обеих сторон сварного шва	 Недостаточная температура сменных нагревательных насадок; Недостаточное время нагрева материала; Превышение внутреннего диаметра раструба фитинга;
10		Форма грата в виде наплывов (слоистая форма) или его отсутствие в части или по всей длине сварного шва	 Превышение температуры сменных нагревательных насадок; Необработанная поверхность стыка; Загрязнение поверхности стыка;

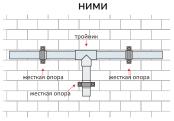
3.2. Монтаж трубопроводов из ППР

Существует несколько типов прокладки трубопроводов из ППР:

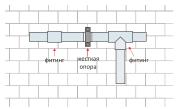
- Скрытая прокладка
- Монтаж в шахтах
- Открытая прокладка

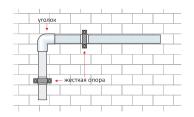

В процессе прокладки необходимо учитывать различные особенности и условия, в частности: линейное тепловое расширение, способ соединения, условия эксплуатации, а также необходимую компенсацию.

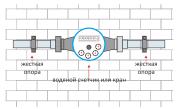
Техника крепления трубопроводов


Для крепления трубопроводов используются два вида опор: жесткие опоры и скользящие опоры. Рекомендуется использовать хомуты с уплотнительными резиновыми прокладками, специально предназначенными для труб из ППР. Данные хомуты не должны оставлять механических повреждений на трубе.

Жесткие опоры


Такой способ крепления трубопровода исключает возможность компенсации, жесткие опоры устанавливаются на отдельных отрезках трубопровода, за счет жесткого соединения обеспечивается надежная прокладка. Необходимо четко рассчитывать расстояние между опорами, учитывая нагрузку при расширении. Не используйте качающиеся хомуты в качестве жестких опор.

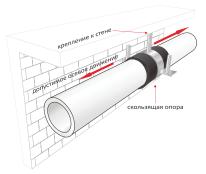

Крепление с двумя жесткими опорами и фитингом между


Крепление при разведении тройником

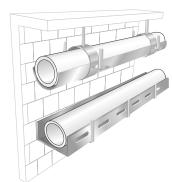
Крепление с двумя фитингами и жесткой опорой между ними

Крепление при разведении углом

Крепление водяного счетчика или крана


Скользящие опоры

Этот способ крепления трубопровода позволяет трубе перемещаться по оси в обоих направлениях, не повреждая саму трубу.


Необходимо размещать фасонные детали на большом расстоянии от скользящих опор, чтобы они не мешали передвижению. При таком способе крепления остается возможность компенсационного движения.

Обозначение:

ЖО – жесткая опора СО – скользящая опора

Установка со скользящими опорами

Установка трубопровода в свободном желобе

Расстояние между опорами для труб ППР Fusitek PN10 (горизонтальный трубопровод)						
T, °C	ØD, mm	Расстояние между опорами, см	ØD, mm	Расстояние между опорами, см		
	Ø16	55	Ø75	150		
	Ø20	65	Ø90	165		
	Ø25	75	Ø110	180		
20	Ø32	90	Ø125	205		
	Ø40	100	Ø140	215		
	Ø50	120	Ø160	225		
	Ø63	140				

Таблица 22

Расстояние	Расстояние между опорами для труб ППР Fusitek PN16 / PN20 (горизонтальный трубопровод)					
ΔT, °C	20	30	40	50	60	70
ØD, mm		Расстояние между опорами, см				
Ø16	50	50	50	50	50	50
Ø20	60	60	60	60	55	50
Ø25	75	75	70	70	65	60
Ø32	90	90	80	80	75	75
Ø40	100	100	95	90	85	80
Ø50	125	120	110	110	100	95
Ø63	140	140	130	130	115	105
Ø75	155	150	140	140	125	115
Ø90	165	160	155	155	140	125
Ø110	185	180	170	170	160	140

Таблица 23

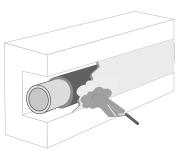
Расстояни	Расстояние между опорами для труб ППР/Ал/ППР Fusitek (горизонтальный трубопровод)					
ΔT, °C	20	30	40	50	60	70
ØD, mm		Расстояние между опорами, см				
Ø20	125	120	110	110	100	90
Ø25	130	125	120	120	110	100
Ø32	150	150	140	140	130	120
Ø40	170	165	160	160	150	140
Ø50	190	190	180	180	170	160
Ø63	210	210	205	200	190	180

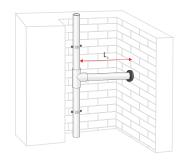
Расстоян	Расстояние между опорами для труб ППР Fusitek Faser (горизонтальный трубопровод)					
ΔT, °C	20	30	40	50	60	70
ØD, mm		Pa	жэм эинкотээ	сду опорами, с	CM	
Ø20	90	90	85	85	75	70
Ø25	105	105	95	95	90	80
Ø32	120	120	110	110	105	95
Ø40	135	130	125	125	120	110
Ø50	155	150	145	140	130	130
Ø63	175	170	165	160	155	145
Ø75	185	180	175	175	165	155
Ø90	195	195	185	185	175	165
Ø110	215	210	200	190	180	170
Ø125	240	225	215	195	185	175
Ø140	255	235	220	200	190	180
Ø160	270	240	235	205	195	185

Примечание: Для вертикальных трубопроводов максимальное расстояние между опорами умножается на коэффициент 1.2.

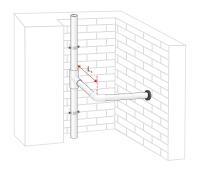
Скрытая прокладка

Скрытая прокладка подразумевает под собой установку трубопровода в бетоне, под штукатуркой, в стене или в полу. При укладке под штукатуркой необходимо осуществлять изоляцию. При такой прокладке линейное расширение обычно не учитывается, при этом изоляция должна быть выполнена в соответствии со стандартом DIN 1988. Сам канал для монтажа должен быть свободным и обеспечивать компенсацию расширения трубопровода. Если же трубопровод согласно условиям не должен изолироваться (прокладка в бетон, в пол, в стену), то его также можно укладывать без учета линейного расширения, так как оно будет компенсироваться самим материалом. Изоляция труб в системах холодной (питьевой воды) Трубы из ППР при установке систем подачи холодной (питьевой воды) должны изолироваться от образования конденсата. Fusitek рекомендует осуществлять изоляцию согласно немецкому стандарту DIN 1988, Part 2.

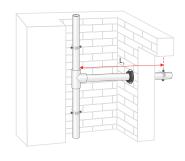



Таблица 25

Контрольные величины минимальной толщины изоляции в системах холодной воды		
Тип прокладки	Толщина изоляции при λ = 0.04Вт/мК	
Открытая прокладка в неотапливаемом помещении	4 mm	
Открытая прокладка в отапливаемом помещении	9 мм	
Прокладка в канале без трубопроводов отопления или горячей воды	4 mm	
Прокладка в канале с трубопроводами отопления или горячей воды	13 mm	
Прокладка в стене, стояк	4 mm	
Прокладка в стене с с трубопроводами отопления или горячей воды	13 мм	
Прокладка в бетоне	4 mm	

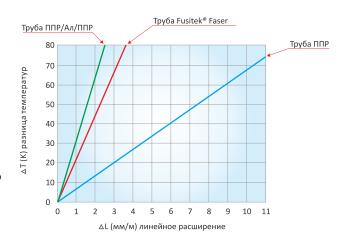

Монтаж в шахтах

При вертикальной прокладке во время установок отводов и ответвлений необходимо учитывать компенсацию стояка.


Рекомендуется применять многослойные композитные трубы, армированные алюминием или стекловолокном, которые по своим качествам идеально подходят для такого рода монтажа, а линейное расширение таких труб значительно меньше простых труб из ППР. Необходимо использовать только жесткие крепежные опоры, с расстоянием не более 3-х метров. При монтаже с использованием обычных труб из ППР требуется уделять особое внимание вопросу компенсации.

При проходе подающей трубы через короб нужно обеспечить свободный ход трубы. Изменение по длине обеспечивается при помощи компенсатора расширения, который должен компенсировать движения вверх и вниз.

Если короб имеет достаточное пространство для установки упругого изгиба за счет компенсационного колена, то рекомендуется использовать такое компенсирование.


Если короб не имеет достаточного пространства для установки рассчитанного компенсатора, то необходимо увеличить отверстие в стене для обеспечения достаточного места для движения.

Примечание: Трубы через отверстия в стене следует пропускать в изоляции

Открытая прокладка

При открытой прокладке необходимо уделять особое внимание внешнему виду трубопровода. Трубы из ППР имеют довольно большой коэффициент линейного расширения, поэтому нужно учитывать этот фактор и заранее просчитывать все способы возможной компенсации.

Для полипропиленовых труб, армированных алюминием или композицией стекловолокна, коэффициент линейного расширения значительно меньше, поэтому часто, в случаях, где необходим строгий учет этого коэффициента, трубопроводы монтируются из таких труб.

Коэффициенты линейного расширения для труб Fusitek®:

Труба ППР: α =0.15 мм/м°С

Труба ППР/Ал/ППР: α =0.03 мм/м°С Труба Fusitek® Faser: α =0.045 мм/м°С

Пример расчета линейного расширения трубопровода Fusitek® ППР

Формула для расчета линейного расширения (сокращения):

 $\Delta L = \alpha \times L \times \Delta T$

ΔL - линейное расширение (мм)

α - коэффициент температурного линейного расширения (мм/м°С)

L- длина трубы (м)

ΔТ - разница температур при монтаже и эксплуатации (°C)

Пример 1:

ΔL - ? (мм)

Труба ППР: α1 = 0.15 мм/м°С

Труба ППР/Ал/ППР: α 2 = 0.03 мм/м°C Труба Fusitek® Faser: α 3 = 0.045 мм/м°C

L = 3 M

T1 = 80°C (Температура при эксплуатации)

T2 = 20°C (Температура при монтаже)

 $\Delta T = T1 - T2 = 60^{\circ}C$

Решение:

 Δ L = 0.15MM/M°C × 3 M × 60°C = 27 MM (Τργ6a ΠΠΡ)

 Δ L = 0.03 mm/m°C × 3 m × 60°C = 5.4 mm (Τργ6а ΠΠΡ/Απ/ΠΠΡ)

 ΔL = 0.045 mm/m°C × 3 m × 60°C = 8.1 mm (Tpy6a Fusitek® Faser)

Способы компенсирования расширения

Компенсационное колено

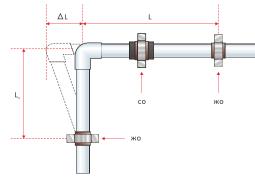
Минимальная длина компенсатора расширения может быть рассчитана на основе следующей формулы:

 $L_s = C \times V(D \times \Delta L)$

L_s - длина компенсатора расширения (мм)

C - константа материала (ППР=20)

D - внешний диаметр трубы (мм)


ΔL - линейное расширение (мм)

Пример 2:

L -? (MM)

D = 40 MM

 ΔL = 27 мм (возьмем данные из Примера 1)

Решение:

 $L_s = 20 \times \sqrt{(40 \times 27)} = 658 \text{ MM}$

Для трубы с внешним диаметром 40 мм и длиной 3 м, которая имеет изменение направления с перепадом температур 60° С, компенсирование для распределения изменений по длине составит 658 мм. Вычисленная компенсационная длина L_{s} (длина компенсатора) – это участок трубопровода без каких-либо опор или креплений, которые могли бы препятствовать температурному изменению длины трубопровода.

П-образный компенсатор

Если отсутствует возможность компенсирования расширения путем изменения направления, то рекомендуется использовать П-образный компенсатор.

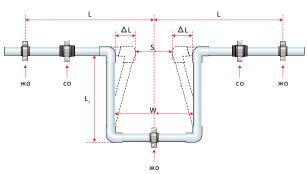
Ширина П-образного компенсатора рассчитывается по следующей формуле:

$W_k = 2 \times \Delta L + S_L$

 ${\bf W}_{k}$ - ширина компенсатора (мм)

ΔL - линейное расширение (мм)

S_L - **1**50 мм (безопасное расстояние)

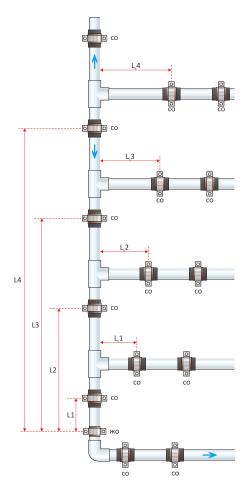

Примечание: W_k должно быть больше или равно 10D

Пример 3:

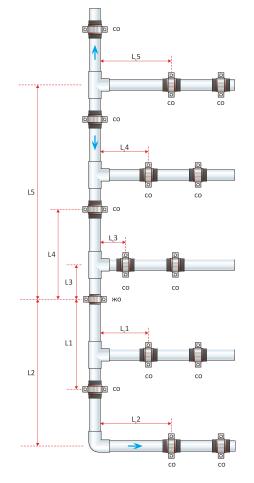
 W_k - ? (MM) k

ΔL = 27 мм (возьмем данные из Примера 1)

S_L = 150 MM



Решение:


 W_k = 2 × 27 MM + 150 MM = 204 MM

Необходимо установить П-образный компенсатор с шириной 204 мм.

Примеры техники монтажа трубопровода

Жесткая опора в нижней части вертикального трубопровода

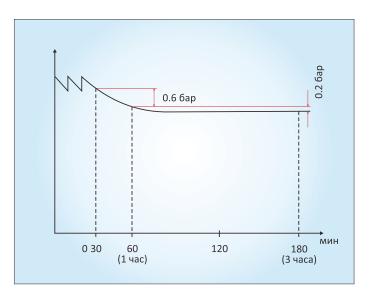
Жесткая опора в средней части вертикального трубопровода

3.3. Протокол испытаний

Испытание давлением

Гидравлическое испытание давлением должно быть проведено сразу же после установки трубопровода. Давление во время теста должно быть в 1,5 раза больше рабочего давления. При проведении теста необходимо учитывать линейное расширение трубы. Разница между температурой трубы и температурой окружающей среды может привести к изменению давления. Изменение температуры на 10°С соответствует изменению давления на величину от 0.5 до 1 бар. Рекомендуется проводить испытание давлением полимерного трубопровода с максимально постоянной температурой окружающей среды.

Испытание давлением состоит из трех частей:


- Предварительное испытание давлением;
- Основное испытание давлением;
- Финальное испытание давлением;

Предварительное испытание давлением

При предварительном испытании давление должно быть в 1,5 раза выше рабочего. Тест должен проводиться дважды: по 30 минут каждый, с интервалом в 10 минут. Во время второго тридцатиминутного теста падение давления не должно превышать 0.6 бар, также не должно быть каких-либо протечек.

Основное испытание давлением

Основное испытание давлением должно проводиться сразу же после предварительного испытания давлением. Продолжительность теста составляет два часа. Давление, установленное после предварительного испытания, не должно упасть более чем на 0.2 бар.

Финальное испытание давлением

Тесты на 10 бар и на 1 бар должны быть проведены поочередно с интервалами не менее 5-ти минут. После каждой подачи давления необходимо осуществлять сброс давления в системе трубопровода. Протечки недопустимы в любой из частей трубопровода.

Измерительные приборы

Манометр должен иметь точность считывания изменения давления не менее 0.1 бар. Измерительный прибор должен устанавливаться в самой низкой точке смонтированной системы.

Протокол испытания давлением смонтированного трубопровода из ППР

Результаты гидравлического теста должны фиксироваться в протоколе испытания давлением смонтированного трубопровода из ППР, данный документ должен быть подписан клиентом и поставщиком. Бланки протокола могут быть предоставлены сервисным отделом Fusitek.

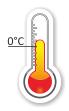
ПРОТОКОЛ ИСПЫТАНИЯ ДАВЛЕНИЕМ СМОНТИРОВАННОГО ТРУБОПРОВОДА ИЗ ППР

Описание установки:	
Место:	
Объект:	
Объект:	

Диаметр трубы, мм	Тип трубы	Длина трубопровода, м	Диаметр трубы, мм	Тип трубы	Длина трубопровода, м
16			75		
20			90		
25			110		
32			125		
40			140		
50			160		
63					

Серийный номер сварочного аппарата:	
Наивысшая точка над счетчиком давления:	М

Предварительное испытание давлением		
Давление теста:	бар	
1-ая регулировка после 10 минут:	бар	
2-ая регулировка после 10 минут:	бар	
Падение давления после первых 30 минут:	бар	
Падение давления после вторых 30 минут:	бар	
Результат теста:		


Основное испытание давлением		
Рабочее давление:	бар (результат предварительного испытания)	
Падение давления после 1-го часа:	бар	
Падение давления после 2-х часов:	бар	
Падение давления:	бар (макс 0,2 бар)	
Результат основного теста:		

Начало теста:		
Конец теста:		
Длительность теста:		
Дата:		
Место:		
Клиент:		
Поставщик:		

Подписи:		
Клиент	Поставщик	

3.4. Меры предосторожности

Fusitek настоятельно рекомендует принимать все указанные ниже меры предосторожности с целью обеспечения правильного и безопасного использования системы.

Низкая температура

Когда температура близка к о°С, материал становится хрупким, поэтому рекомендуется избегать возможных ударов по трубе. Если есть риск замерзания воды внутри трубы, то необходимо, чтобы вода была слита, так как увеличение объема может привести к поломкам или разрыву трубопровода.

Герметизация соединений

Рекомендуется использовать тефлоновую ленту для герметизации резьбовых соединений.

Намотка ФУМ ленты на резьбу должна осуществляться от начала по ходу резьбы таким образом, чтобы последующий виток частично (на 30 - 40%) перекрывал предыдущий конец ленты. Чтобы исключить возможность появления морщин и складок на ленте ФУМ, которые при закручивании в резьбу сворачиваются и приводят к разуплотнению соединения, наматывайте ленту с натягом. После того как вы намотали ленту, прижмите ее с силой к резьбе, прокручивая пальцами. Начинайте закручивать соединение, оно должно туго закручиваться, при этом лента ФУМ должна разминаться и заполнять все пространство между двумя резьбами. Если соединение закручивается легко, то нанесите еще несколько витков ленты ФУМ.

Монтаж комбинированных фитингов из ППР с трубной резьбой $\frac{1}{2}$ и $\frac{3}{4}$, не имеющих шестигранника «под ключ» на латунной части фитинга

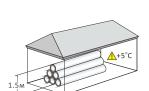
Важно

Усилие закручивания комбинированных фитингов из ППР без шестигранника на корпусе не должно превышать усилие 15 Н*м. Такое усилие не требует использования какого-либо инструмента для затяжки, поэтому комбинированные фитинги данных типоразмеров рекомендовано монтировать с ответными соединениями вручную, без вспомогательного инструмента, с применением ФУМ ленты или нити TANGIT UNI-LOCK.

Использование пакли или льна не рекомендовано. Если резьба изделий (краны, вентили, стальные трубы), с которыми соединяется комбинированный фитинг из ППР, имеет геометрические отклонения от стандарта, то в таких случаях разрешается использовать дополнительный инструмент для закрутки, усилие которого не должно превышать допустимого значения в 15 H*м, в частности, рекомендуется использовать ременной ключ с длиной ручки не более 30 сантиметров.

¶ • Внимание

Применение газового ключа в качестве вспомогательного инструмента для затяжки комбинированных фитингов из ППР для данных типоразмеров крайне не рекомендованно, так как при использовании данного инструмента усилие затяжки может составлять более 40 Н*м, а при таком усилии может произойти проворачивание закладной детали в корпусе фитинга, при усилии более 70 Н*м возможно разрушение самой латунной закладной.


Монтаж комбинированных фитингов из ППР с шестигранником «под ключ» на латунной части фитинга

При наличии у комбинированного фитинга шестигранника «под ключ» на закладной детали удержание или закрутку необходимо осуществлять только за него. Обязательно используйте набор гаечных ключей большого размера с узким профилем.

Ультрафиолетовые лучи

Полипропиленовые трубы и фитинги должны избегать прямых ультрафиолетовых лучей (солнечный свет и неоновые лампы). Под воздействием лучей материал стареет и теряет свои характеристики.

Хранение и транспортировка

Трубы и соединительные детали из ППР необходимо оберегать от ударов, бросания и любых механических нагрузок. При перевозке их следует укладывать на ровную поверхность, предохраняя от острых металлических углов и ребер транспортной платформы. Во время складирования трубы нужно размещать горизонтально, а максимальная высота хранения не должна превышать 1.5 м. Хранить полипропиленовые детали следует в закрытых помещениях или под навесом при температуре не менее +5°C, также надо соблюдать расстояние не менее 1 метра от отопительных приборов.

Сгибание

Для сгибания трубы нагревайте ее горячим воздухом с температурой около 140°С. Ни в коем случае не нагревайте открытым огнем. Минимальный радиус сгибания для полипропиленовых труб малого диаметра равен 8-ми диаметрам изгибаемой трубы.

Обрезка трубы

Используйте только соответствующие ножницы с острым лезвием и обрезайте строго перпендикулярно оси трубы, при обрезке не должно образовываться заусенцев.

Сварка

Убедитесь, что сварочный аппарат и полипропиленовые компоненты не имеют повреждений и не загрязнены. Детали марки Fusitek® не рекомендуется сваривать с компонентами других производителей.

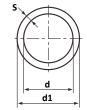
Корректирование после сварки

Корректировка положения трубы и фитинга может быть выполнена путем небольшого вращения компонентов (не более чем на 15°) сразу же после их соединения. Изменения, производимые на более поздней стадии, могут привести к повреждению соединения.

Заготовка сварных конструкций

Стандартные заготовки могут быть сварены и приготовлены заранее, что позволит сэкономить время и повысить безопасность системы.

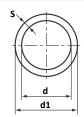
Испытание давлением


Сразу же после установки системы трубопровода необходимо провести испытание давлением.

4. ОБЗОР ПРОДУКЦИИ

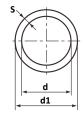
4.1. Трубы

Труба из ППР PN 1.0 для холодной и питьевой воды



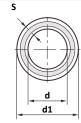
Артикул	Внешний диаметр, d, мм	Внутренний диаметр, d1, мм	Толщина стенки, S, мм	Серия трубы	Номинальное давление, МПа	Количество в упаковке, шт./м, каждая труба 4 м
FT00101	20	16.2	1.9	SDR11/S5	PN1.0	40/160
FT00102	25	20.4	2.3	SDR11/S5	PN1.0	25/100
FT00103	32	26.2	2.9	SDR11/S5	PN1.0	15/60
FT00104	40	32.6	3.7	SDR11/S5	PN1.0	12/48
FT00105	50	40.8	4.6	SDR11/S5	PN1.0	8/32
FT00106	63	51.4	5.8	SDR11/S5	PN1.0	5/20
FT00107	75	61.4	6.8	SDR11/S5	PN1.0	3/12
FT00108	90	73.6	8.2	SDR11/S5	PN1.0	2/8
FT00109	110	90	10.0	SDR11/S5	PN1.0	2/8
FT00110	125	102.2	11.4	SDR11/S5	PN1.0	1/4
FT00112	160	130.8	14.6	SDR11/S5	PN1.0	1/4

Труба из ППР PN 1.6 для горячей, холодной и питьевой воды



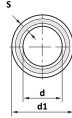
Артикул	Внешний диаметр, d, мм	Внутренний диаметр, d1, мм	Толщина стенки, S, мм	Серия трубы	Номинальное давление, МПа	Количество в упаковке, шт./м, каждая труба 4 м
FT00201	20	14.4	2.8	SDR7.4/S3.2	PN1.6	40/160
FT00202	25	18.0	3.5	SDR7.4/S3.2	PN1.6	25/100
FT00203	32	23.2	4.4	SDR7.4/S3.2	PN1.6	15/60
FT00204	40	29	5.5	SDR7.4/S3.2	PN1.6	12/48
FT00205	50	36.2	6.9	SDR7.4/S3.2	PN1.6	8/32
FT00206	63	45.8	8.6	SDR7.4/S3.2	PN1.6	5/20
FT00207	75	54.4	10.3	SDR7.4/S3.2	PN1.6	3/12
FT00208	90	65.4	12.3	SDR7.4/S3.2	PN1.6	2/8
FT00209	110	79.8	15.1	SDR7.4/S3.2	PN1.6	2/8
FT00210	125	90.8	17.1	SDR7.4/S3.2	PN1.6	1/4
FT00212	160	116.2	21.9	SDR7.4/S3.2	PN1.6	1/4

Труба из ППР PN 2.0 для горячей, холодной и питьевой воды



Артикул	Внешний диаметр, d, мм	Внутренний диаметр, d1, мм	Толщина стенки, S, мм	Серия трубы	Номинальное давление, МПа	Количество в упаковке, шт./м, каждая труба 4 м
FT00301	20	13.2	3.4	SDR6/S2.5	PN2.0	40/160
FT00302	25	16.6	4.2	SDR6/S2.5	PN2.0	25/100
FT00303	32	21.2	5.4	SDR6/S2.5	PN2.0	15/60
FT00304	40	26.6	6.7	SDR6/S2.5	PN2.0	12/48
FT00305	50	33.4	8.3	SDR6/S2.5	PN2.0	8/32
FT00306	63	42	10.5	SDR6/S2.5	PN2.0	5/20
FT00307	75	50	12.5	SDR6/S2.5	PN2.0	3/12
FT00308	90	60	15.0	SDR6/S2.5	PN2.0	2/8
FT00309	110	73.4	18.3	SDR6/S2.5	PN2.0	2/8
FT00310	125	83.4	20.8	SDR6/S2.5	PN2.0	1/4
FT00312	160	106.8	26.6	SDR6/S2.5	PN2.0	1/4

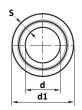
Композитная труба PPR/PPR+GF/PPR Fusitek Faser PN2.0* для горячей и холодной воды, а также для систем отопления



Артикул	Внешний диаметр, d, мм	Внутренний диаметр, d1, мм	Толщина стенки, S, мм	Серия трубы	Номинальное давление, МПа	Количество в упаковке, шт./м, каждая труба 4 м
FT00401	20	14.4	2.8	SDR7.4/S3.2	PN2.0*	40/160
FT00402	25	18.0	3.5	SDR7.4/S3.2	PN2.0*	25/100
FT00403	32	23.2	4.4	SDR7.4/S3.2	PN2.0*	15/60
FT00404	40	29	5.5	SDR7.4/S3.2	PN2.0*	12/48
FT00405	50	36.2	6.9	SDR7.4/S3.2	PN2.0*	8/32
FT00406	63	45.8	8.6	SDR7.4/S3.2	PN2.0*	5/20
FT00407	75	54.4	10.3	SDR7.4/S3.2	PN2.0*	3/12
FT00408	90	65.4	12.3	SDR7.4/S3.2	PN2.0*	2/8
FT00409	110	79.8	15.1	SDR7.4/S3.2	PN2.0*	2/8
FT00410	125	90.8	17.1	SDR7.4/S3.2	PN2.0*	1/4
FT00412	160	116.2	21.9	SDR7.4/S3.2	PN2.0*	1/4

^{*}В соответствии с заводскими нормами

Композитная труба PPR/PPR+GF/PPR Fusitek Faser PN2.5* для горячей и холодной воды, а также для систем отопления

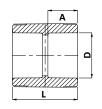


Артикул	Внешний диаметр, d, мм	Внутренний диаметр, d1, мм	Толщина стенки, S, мм	Серия трубы	Номинальное давление, МПа	Количество в упаковке, шт./м, каждая труба 4 м
FT00501	20	13.2	3.4	SDR6/S2.5	PN2 5*	40/160
FT00502	25	16.6	4.2	SDR6/S2.5	PN2.5*	25/100
FT00503	32	21.2	5.4	SDR6/S2.5	PN2.5*	15/60
FT00504	40	26.6	6.7	SDR6/S2.5	PN2.5*	12/48
FT00505	50	33.4	8.3	SDR6/S2.5	PN2.5*	8/32
FT00506	63	42	10.5	SDR6/S2.5	PN2.5*	5/20
FT00507	75	50	12.5	SDR6/S2.5	PN2.5*	3/12
FT00508	90	60	15.0	SDR6/S2.5	PN2.5*	2/8
FT00509	110	73.4	18.3	SDR6/S2.5	PN2.5*	2/8
FT00510	125	83.4	20.8	SDR6/S2.5	PN2.5*	1/4
FT00512	160	106.8	26.6	SDR6/S2.5	PN2.5*	1/4

^{*}В соответствии с заводскими нормами

Композитная труба PPR/Al/PPR PN 2.5* с внутренним армированием для горячей и холодной воды, а также для систем отопления

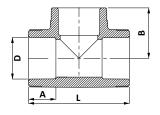
Артикул	Внешний диаметр, d, мм	Внутренний диаметр, d1, мм	Толщина стенки, S, мм	Серия трубы	Номинальное давление, МПа	Количество в упаковке, шт./м, каждая труба 4 м
FT00601	20	13.2	3.4	SDR6/S2.5	PN2.5*	40/160
FT00602	25	16.6	4.2	SDR6/S2.5	PN2.5*	25/100
FT00603	32	21.2	5.4	SDR6/S2.5	PN2.5*	15/60
FT00604	40	26.6	6.7	SDR6/S2.5	PN2.5*	12/48
FT00605	50	33.4	8.3	SDR6/S2.5	PN2.5*	8/32
FT00606	63	42	10.5	SDR6/S2.5	PN2.5*	5/20


^{*}В соответствии с заводскими нормами

4.2. Соединительные детали и краны

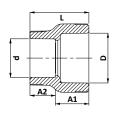
Фитинги из ППР

Муфта равносторонняя



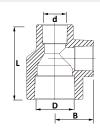
A	Р	азмерь		Количество, шт.
Артикул	D, MM	A, mm	L, MM	(пакет/коробка)
FT02301	20	14.5	32	50/400
FT02302	25	16	35	25/300
FT02303	32	18	39	10/150
FT02304	40	20.5	45	10/100
FT02305	50	23.5	51	5/40
FT02306	63	27.5	59	2/30
FT02307	75	32	69	2/24
FT02308	90	35.5	76	1/12
FT02309	110	41	87	1/8

Тройник равносторонний



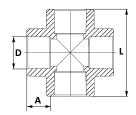
		Разм	еры		Количество,
Артикул	D, MM	A, mm	В, мм	L, mm	шт. (пакет/ коробка)
FT01101	20	14.5	25	50	20/200
FT01102	25	16	29.5	59	15/150
FT01103	32	18	35	70	10/70
FT01104	40	20.5	41.5	83	5/40
FT01105	50	23.5	49.5	99	2/20
FT01106	63	27.5	60	120	1/10
FT01107	75	32	70.5	141	2/8
FT01108	90	35.5	81.5	163	1/5
FT01109	110	41	97	196	1/2

Муфта переходная



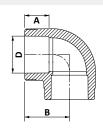
A n=1410:-			Размері	ы		Количество, шт.
Артикул	D, mm	A, mm	A1, MM	A2, mm	L, MM	(пакет/коробка)
FT02401	25	20	16	14.5	33	50/300
FT02402	32	20	18	14.5	35.5	25/200
FT02403	32	25	18	16	37	25/200
FT02404	40	20	20.5	14.5	38.5	10/140
FT02405	40	25	20.5	16	40	10/140
FT02406	40	32	20.5	18	42	10/100
FT02407	50	20	23.5	14.5	42.5	5/80
FT02408	50	25	23.5	16	44	5/80
FT02409	50	32	23.5	18	46	5/80
FT02410	50	40	23.5	20.5	48.5	5/40
FT02411	63	20	27.5	14.5	47	2/40
FT02412	63	25	27.5	16	48.5	2/40
FT02413	63	32	27.5	18	50.5	2/40
FT02414	63	40	27.5	20.5	53	2/40
FT02415	63	50	27.5	23.5	56	2/30
FT02419	75	50	32	24	71.4	2/20
FT02420	75	63	32	28	69.7	2/20
FT02422	90	50	35.5	24	82.39	1/15
FT02423	90	63	35.5	28	80.7	1/15
FT02424	90	75	35.5	32	78.7	1/10
FT02426	110	63	41	28	97.25	1/10
FT02428	110	90	41	35.5	90.8	1/8

Тройник переходной 2



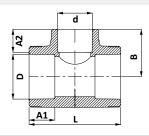
		Разм	Количество,		
Артикул	D, mm	d, mm	В, мм	L, mm	шт. (пакет/ коробка)
FT01301	25	20	27.25	56.5	20/160
FT01302	32	20	30.25	58.3	10/100
FT01303	32	25	34	63.8	10/80

Крестовина



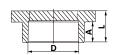
A	F	азмері	ol	Количество, шт.
Артикул	D, mm	A, mm	L, mm	(пакет/коробка)
FT01501	20	14.5	52.5	20/160
FT01502	25	16	62	10/80
FT01503	32	18	72.1	10/60

Угол 90°



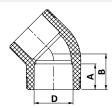
A	F	Размері	ol	Количество, шт.
Артикул	D, mm	A, mm	В, мм	(пакет/коробка)
FT01701	20	14.5	25	50/300
FT01702	25	16	29.5	25/150
FT01703	32	18	35	20/100
FT01704	40	20.5	41.5	5/50
FT01705	50	23.5	49.5	2/30
FT01706	63	27.5	60	2/10
FT01707	75	32	70.5	1/8
FT01708	90	35.5	81.5	1/6
FT01709	110	41	98	1/4

Тройник переходной



		Количество,					
Артикул	D, mm	d, mm	A1, mm	A2, mm	В, мм	L, mm	шт. (пакет/ коробка)
FT01201	25	20	16	14.5	28.5	55	20/160
FT01202	32	20	18	14.5	31.5	59	10/100
FT01203	32	25	18	16	33	64	10/80
FT01204	40	20	20.5	14.5	36	65	10/70
FT01205	40	25	20.5	16	37.5	70	10/70
FT01206	40	32	20.5	18	39.5	76	10/50
FT01207	50	20	23.5	14.5	41.25	72	5/40
FT01208	50	25	23.5	16	42.75	77	5/40
FT01209	50	32	23.5	18	44.75	83	5/30
FT01210	50	40	23.5	20.5	47.25	92	5/25
FT01211	63	20	27.5	14.5	49.25	80	2/10
FT01212	63	25	27.5	16	50.5	86	2/10
FT01213	63	32	27.5	18	51.85	92	2/10
FT01214	63	40	27.5	20.5	54.25	100	2/10
FT01215	63	50	27.5	23.5	57.25	110	2/10
FT01216	75	25	32	16.5	55.15	92.61	2/12
FT01217	75	32	32	18.5	57.16	99.61	2/12
FT01218	75	40	32	21	59.65	107.51	1/10
FT01221	90	32	35.5	18.5	64.51	107	1/6
FT01222	90	40	35.5	21	67	114.9	1/6
FT01224	90	63	35.5	28	74	137.7	1/6
FT01226	110	40	41	21	77.86	128.5	1/4
FT01227	110	50	41	24	80.65	138.5	1/4
FT01228	110	63	41	28	84.87	151.3	1/4

Втулка под фланец



A		Размерь	ol	Количество, шт.
Артикул	D, mm	A, mm	L, MM	(пакет/коробка)
FT03807	75	32	46	2/18
FT03808	90	35.5	50	1/16
FT03809	110	41	55.5	1/8

Угол 45°

A		Размерь	Количество, шт.	
Артикул	D, mm	A, mm	В, мм	(пакет/коробка)
FT02101	20	14.5	20.02	50/400
FT02102	25	16	22.56	25/200
FT02103	32	18	25.8	10/100
FT02104	40	20.5	29.96	10/60
FT02105	50	23.5	34.92	5/40
FT02106	63	27.5	41.62	2/10
FT02107	75	32	50.2	1/10
FT02108	90	35.5	57	1/6
FT02109	110	41	67.74	1/4

Заглушка НР

A	Разм	еры	Количество, шт.
Артикул	Дюймы	L, MM	(пакет/коробка)
FT03401	1/2"	23	25/600

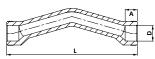
Опора

A	Размеры	Количество, шт.				
Артикул	D, MM	(пакет/коробка)				
FT03601	20	50/600				
FT03602	25	50/500				
FT03603	32	50/350				
FT03604	40	50/300				
FT03605	50	20/200				
FT03606	63	20/120				

3аглушка

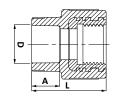
A	ı	Размерь	Количество, шт.	
Артикул	D, mm	A, mm	L, MM	(пакет/коробка)
FT03301	20	14.5	21	50/500
FT03302	25	16	23	40/400
FT03303	32	18	26.5	20/200
FT03304	40	20.5	30.5	10/150
FT03305	50	23.5	36	5/50
FT03306	63	27.5	42	2/40

Заглушка (пробка) монтажная 1/2" НР, длинная



A	Разм	еры		Количество, шт. (пакет/коробка)	
Артикул	Дюймы	L, MM	Цвет		
FT03402	1/2"	75	синий	10/140	
FT03403	1/2"	75	красный	10/140	

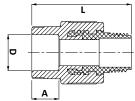
Обвод



A ========	ı	Размерь	Количество, шт.				
Артикул	D, mm	A, mm	L, MM	(пакет/коробка)			
FT02901	20	14.5	161	10/80			
FT02902	25	16	200	10/50			
FT02903	32	18	238.5	5/30			

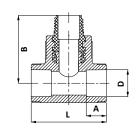
Фитинги из ППР с латунными вставками

Муфта комбинированная ВР



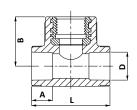
		Разм	Количество,			
Артикул	D, мм Дюймы A,		A, mm	L, mm	шт. (пакет/ коробка)	
FT04201	20	1/2"	14.5	38.5	20/200	
FT04202	20	3/4"	14.5	40.5	20/160	
FT04203	25	1/2"	16	40.5	20/160	
FT04204	25	3/4"	16	42.5	20/160	
FT04206	32	3/4"	18	40	10/100	
FT04207	32	1"	18	44.2	10/60	
FT04208 (с шестигранником)	32	1"	18	52	10/60	
FT04210 (с шестигранником)	40	1¼"	21	61.5	5/40	
FT04212 (с шестигранником)	50	1½"	24	66.3	5/40	
FT04214 (с шестигранником)	63	2"	28	77	2/20	

Муфта комбинированная НР



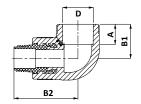
							
Λ		Разм	Количество, шт.				
Артикул	D, mm	Дюймы	A, mm	L, MM	(пакет/коробка)		
FT04301	20	1/2"	14.5	53.2	20/200		
FT04302	20	3/4"	14.5	55.9	20/180		
FT04303	25	1/2"	16	55.2	20/180		
FT04304	25	3/4"	18	51	20/140		
FT04306	32	3/4"	18	52.7	10/100		
FT04307	32	1"	16	56.4	10/60		
FT04308 (с шестигранником)	32	1"	18	71	10/60		
FT04310 (с шестигранником)	40	1¼"	21	77.8	5/40		
FT04312 (с шестигранником)	50	1½"	24	82.6	5/30		
FT04314 (с шестигранником)	63	2"	28	96.5	2/20		

Тройник комбинированный НР

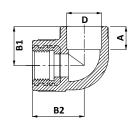


		Pa	Количество,			
Артикул	D, mm	Дюймы	A, mm	В, мм	L, mm	шт. (пакет/ коробка)
FT04101	20	1/2"	14.5	48.7	54	10/120
FT04102	20	3/4"	14.5	52.3	60	10/100
FT04103	25	1/2"	16	50.7	54	10/100
FT04104	25	3/4"	16	54.3	60	10/80
FT04105	32	1/2"	18	56.83	71.3	10/60
FT04106	32	3/4"	18	57.13	71.3	10/60
FT04107	32	1"	18	56.96	86	5/40
FT04108 (с шестигранником)	32	1"	18	69.5	72	5/40

Тройник комбинированный ВР



		Pa	Количество,			
Артикул	D, mm	Дюймы	A, mm	В, мм	L, MM	шт. (пакет/ коробка)
FT04001	20	1/2"	14.5	34	54	10/120
FT04002	20	3/4"	14.5	36	60	10/100
FT04003	25	1/2"	16	36	54	10/100
FT04004	25	3/4"	16	38	60	10/80
FT04005	32	1/2"	18	40.63	71.3	10/60
FT04006	32	3/4"	18	42.13	71.3	10/60
FT04007	32	1"	18	42.46	86	5/40
FT04008 (с шестигранником)	32	1"	18	51.5	72	5/40

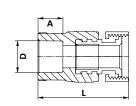

Угол 90° комбинированный НР

Угол 90° комбинированный ВР

		Pas	мерь	ol		Количество,
Артикул	D, MM	Дюймы	A, MM	В1, мм	В2, мм	шт. (пакет/ коробка)
FT04501	20	1/2"	14.5	27	48.7	10/160
FT04502	20	3/4"	14.5	30	52.4	10/120
FT04503	25	1/2"	16	27	50.7	10/120
FT04504	25	3/4"	16	30	54.4	10/100
FT04507	32	1"	16	30	54.8	5/40
FT04508 (с шестигранником)	32	1"	18	36	69.5	5/40

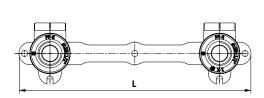
		Раз	мерь	ı		Количество,
Артикул	D, MM	Дюймы	A, MM	В1, мм	В2, мм	шт. (пакет/ коробка)
FT04401	20	1/2"	14.5	27	34	10/160
FT04402	20	3/4"	14.5	30	36	10/120
FT04403	25	1/2"	16	27	36	10/140
FT04404	25	3/4"	16	30	38	10/120
FT04407	32	1"	18	43	42.46	5/40
FT04408 (с шестигранником)	32	1"	18	36	51.5	5/40

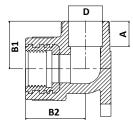
Угол 90° комбинированный ВР с настенным креплением



		Pa	змер	ы		Va
Артикул	D, MM	Дюймы	A, MM	В1, мм	В2, мм	Количество, шт. (пакет/коробка)
FT04601	20	1/2"	14.5	27	34	10/120

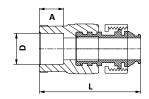
Муфта с накидной гайкой





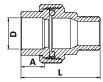
A		Разм	еры		Количество, шт.			
Артикул	D, mm	Дюймы	A, mm	В1, мм	 			
FT05200	20	1/2"	15	54	10/180			
FT05201	20	3/4"	15	50.5	10/120			

Настенное крепление под смеситель



A			Разме		Количество, шт.		
Артикул	Артикул D, мм Дюймы A, мм B1, мм B2, мм L, мм					(пакет/коробка)	
FT05101	20	1/2"	14.5	27	34	205.5	2/30

Муфта с накидной гайкой, евроконус



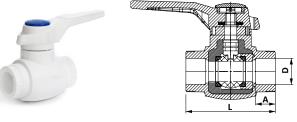
A		Разме	ры		Количество, шт.
Артикул	D, mm	Дюймы	A, mm	L, mm	(пакет/коробка)
FT05301	20	3/4"	15	62.5	10/120

Фитинги из ППР с универсальными совмещенными соединениями

Муфта разъемная шестигранная НР типа "американка"

		Разм	Количество, шт.		
Артикул	D, mm	Дюймы	A, mm	L, MM	(пакет/коробка)
FT05701	20	1/2"	14.5	49	10/150
FT05712	20	3/4"	14.5	51	10/150
FT05721	25	1/2"	16	52.3	10/120
FT05702	25	3/4"	16	53.5	10/120
FT05723	25	1"	16	54	10/100
FT05732	32	3/4"	18	56	5/70
FT05703	32	1"	18	58	5/70
FT05704	40	1¼"	20.5	63.5	5/40
FT05705	50	1½"	23.5	74	5/25
FT05706	63	2"	27.5	83.5	1/15

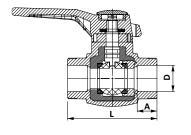
Муфта разъемная шестигранная ВР типа "американка"



A		Разме	еры		Количество, шт.
Артикул	D, mm	Дюймы	A, mm	L, MM	(пакет/коробка)
FT05601	20	1/2"	14.5	34.5	10/150
FT05612	20	3/4"	14.5	39	10/150
FT05621	25	1/2"	16	38.3	10/120
FT05602	25	3/4"	16	39	10/120
FT05623	25	1"	16	43	10/100
FT05632	32	3/4"	18	43	5/80
FT05603	32	1"	18	43.5	5/80
FT05604	40	1¼"	20.5	47	5/40
FT05605	50	1½"	23.5	56.5	5/30
FT05606	63	2"	27.5	62.5	1/15

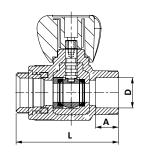
Краны, фильтры и другие компоненты из ППР

Шаровый кран из ППР для холодной воды

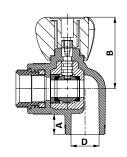


A	F	Размерь	ol	Количество, шт.
Артикул	D, MM	A, mm	L, MM	(пакет/коробка)
FT07201	20	14.5	65.5	10/80
FT07202	25	16	71	10/60
FT07203	32	18	85	5/30
FT07204	40	20.5	100	1/20
FT07205	50	23.5	114.5	1/10
FT07206	63	27.5	133	1/6

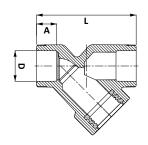
Шаровый кран из ППР для горячей воды



A 22141012		Размер	ы	Количество, шт.
Артикул	D, MM	A, mm	L, mm	(пакет/коробка)
FT07101	20	14.5	65.5	10/80
FT07102	25	16	71	10/60
FT07103	32	18	85	5/30
FT07104	40	20.5	100	1/20
FT07105	50	23.5	114.5	1/10
FT07106	63	27.5	133	1/6


Прямой радиаторный шаровый кран из ППР

Угловой радиаторный шаровый кран из ППР



Артикул		Разм	Количество, шт.		
	D, mm	Дюймы	A, mm	L, MM	(пакет/коробка)
FT07301	20	1/2"	14.5	65	5/60
FT07302	25	3/4"	16	68.5	5/40

	A		Разме	еры		Количество, шт.
Артикул	D, mm	Дюймы	A, mm	В, мм	(пакет/коробка)	
	FT07401	20	1/2"	14.5	49.2	5/60
	FT07402	25	3/4"	16	50.92	5/40

Фильтр

A	Размеры			Количество, шт.	
Артикул	D, MM	MM A, MM L, MM		(пакет/коробка)	
FT07601	20	14.5	76	5/90	
FT07602	25	16	79	5/60	
FT07603	32	18	95	5/40	

4.3. Монтажный инструмент

Монтажный инструмент и аксессуары для систем ППР

Ножницы для обрезки ППР труб

Артикул Размеры, Д, мм		Количество, шт.
FT08303	16-25	1
FT08301	16-40	1
FT08304	16-40	1
FT08302	20-75	1

Артикул Размеры, Д, мм		Количество, шт.	
FT08305	16-63	1	
FT08306	75-110	1	

Машина с центратором для раструбной сварки труб и фитингов из ППР

Артикул	Размеры, Д, мм	Количество, шт.
FT08501	50-160	1

Нагревательные насадки для раструбной сварки

Артикул	Размеры, Д, мм	Количество, шт.
FT08602	20	1
FT08603	25	1
FT08604	32	1
FT08605	40	1
FT08606	50	1
FT08607	63	1
FT08608	75	1
FT08609	90	1
FT08610	110	1
FT08611	125	1
FT08613	160	1

Головка зачистки трубы под дрель

Артикул	Размеры, Д, мм	Количество, шт.
FT09202	20	1
FT09203	25	1
FT09204	32	1
FT09205	40	1
FT09206	50	1
FT09207	63	1
FT09208	75	1
FT09209	90	1
FT09210	110	1

Аппараты для раструбной сварки труб и фитингов из ППР

Артикул Размеры, Д, мм		Количество, шт.
FT08401	20-32	1
FT08402	20-63	1
FT08403	75-110	1

Устройство зачистки ручного типа

Артикул	Размеры, Д, мм	Количество, шт.
FT09002	20-25	1
FT09004	32-40	1
FT09006	50-63	1
FT09010	20-25-32-40	1

Торцеватель алюминиевого слоя

Артикул	Размеры, Д, мм	Количество, шт.	
FT09101	20-25	1	
FT09102	32-40	1	
FT09103	50-63	1	

Ленточный ключ

Артикул	Размеры, Д, мм	Количество, шт.
FT09501	до 300	1

ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ

Вопрос:

5

Из какого сырья производятся трубопроводные системы ППР Fusitek?

Ответ:

Только лучшее на сегодняшний день сырье:

ППР тип 3 – Сибур (Россия), Лукойл (Россия), Sabic Vestolen (Германия), Basell Hostalen (Германия); Адгезив – Mitsui Admer (Германия-Япония);

Латунные вставки - CW617N, CW614N.

Вопрос:

Какие трубы, армированные алюминием, Вы производите? Есть ли у Вас трубы, армированные алюминием, которые не требуют зачистки или дополнительной обработки?

Ответ:

Fusitek производит два вида полипропиленовых труб, армированных алюминием: Fusitek Stabi с наружным армированием и Fusitek PPR/Al/PPR с внутренним армированием.

На сегодняшний день не существует ППР трубы с алюминием, которую можно варить враструб с фитингом напрямую без дополнительной обработки. Так называемые "трубы-лентяйки" – это очень большое заблуждение и риск. Существует вероятность, что в момент сваривания трубы и фитинга, слой алюминия не будет закрыт полимером, а алюминий при прямом контакте с водой окисляется, что со временем может привести к расслоению трубы или разрыву.

Труба Fusitek Stabi должна обязательно зачищаться, а труба Fusitek PPR/Al/PPR с внутренним армированием должна обязательно торцеваться.

Вопрос:

Правда ли, что трубы ППР серого или зеленого цвета лучше труб ППР белого цвета?

Ответ:

Конечно, нет! Характеристики материала на 100% одинаковые при любом цвете, по своей природе натуральные гранулы полипропилена прозрачного матового цвета. Преобладание ППР белого цвета на нашем рынке обусловлено в большей степени историческими факторами и особенностями монтажа. При появлении на рынке труб из ППР, первые производители пытались показать свою уникальность с помощью собственного цвета, а учитывая, что монтаж ППР труб в Западной Европе по большей части велся в закрытой прокладке, выбор цвета не играл особой роли.

У нас, зачастую, используется открытая прокладка, а отопительные приборы, в большинстве случаев, белого цвета, следовательно, для более эстетичного вида чаще выбираются трубы из ППР белого цвета.

Вопрос

Устойчивы ли трубы из ППР к прямому воздействию солнечных лучей?

Ответ:

Полипропиленовые трубы и фитинги должны избегать прямых ультрафиолетовых лучей (солнечный свет и неоновые лампы). Под воздействием лучей материал стареет и теряет свои характеристики.

Вопрос:

Разрешено ли монтировать полипропиленовые трубы и фитинги при отрицательных температурах?

Ответ:

Когда температура близка к 0°С, то материал становится хрупким (особенно это касается труб ППР, армированных стекловолокном), поэтому рекомендуется избегать возможных ударов по трубе. Если есть риск замерзания воды внутри трубы, то необходимо, чтобы вода была слита, так как увеличение объема может привести к поломкам или разрыву трубопровода.

Монтаж в неотапливаемых помещениях возможен. При температуре окружающей среды ниже +5°C время нагрева сварного соединения должно быть увеличено. Если работы по монтажу ведутся при минусовых температурах, то необходимо более тщательное соблюдение технологий монтажа.

Вопрос:

У некоторых производителей есть армированные трубы PPR/Al/PERT, где внутренний слой делается из PERT. Данные производители утверждают, что температурные нагрузки у данной трубы еще выше, чем у труб PPR/Al/PPR. Будете ли Вы производить такие трубы?

Ответ:

Однозначно нет, так как у нас есть большие сомнения в надежности сваривания данных труб с фитингами из ППР. PPR и PERT- это разные материалы, у которых к тому же отличается температура плавления. Не будет обеспечиваться гомогенность свара, что в сварном соединении ППР труб и фитингов является ключевым. К тому же данный вид трубы не имеет государственной сертификации как в России, так и в Европе.

Вопрос:

Можно ли трубопровод из ППР замоноличить или проложить в стяжку?

OTRET

Да, возможно. Трубы разрешается замоноличивать, также разрешается монтаж трубопровода в конструкциях перекрытий и в бетонной стяжке. При скрытой прокладке трубопровода должна обеспечиваться возможность температурного удлинения труб.

Вопрос:

Можно ли трубопровод из ППР закапывать в землю?

Ответ

Да, конечно. Согласно требований СНиП 2.04.02-84*, при круглогодичном использовании трубопровода прокладку в земле следует выполнять ниже глубины промерзания.

Вопрос:

Совместимы ли трубы и фитинги ППР Fusitek с другими производителями?

Ответ:

Теоретически, да. Но мы настоятельно не рекомендуем такое совместное использование, также мы не сможем дать гарантию на систему, смонтированную трубами и фитингами разных производителей. На сегодняшний день на рынке можно найти полипропиленовые трубы самых различных производителей, у которых совершенно разная культура производства и контроля качества, разные поставщики сырья.

Много производителей с целью понижения себестоимости используют низкокачественное сырье или добавляют вторичное сырье и мел, занижают вес труб, фитингов и закладных деталей.

Вопрос:

Возможно ли использование трубы Fusitek Faser в системах отопления?

OTRAT

Труба Fusitek Faser, армированная стекловолокном, может использоваться в системах отопления. Как для обычных труб из ППР, так и для труб ППР, армированных стекловолокном, очень важно учитывать требования к кислородопроницаемости. В случаях, где есть ограничения по содержанию кислорода, мы рекомендуем использовать трубы, армированные алюминием.

Вопрос:

Почему Вы акцентируете, что материал закладных деталей – латунь марки CW617N?

Ответ:

Трубопроводы из ППР могут использоваться в системах питьевого водоснабжения. Все компоненты системы должны быть экологически безопасны при контакте с водой. Латунь марки СW617N имеет низкое содержание свинца (не более 2.5%) и одобрена европейскими нормами для использования в питьевом водоснабжении.

Вопрос:

Можно ли использовать полипропиленовые трубы в системах пожаротушения?

Ответ:

При использовании стандартного сырья ППР - нет. Для систем пожаротушения необходимо использовать модифицированный ППР с классом воспламеняемости В1 (трудновоспламеняемые). На данный момент мы не производим такую систему.

МЕСТО ДЛЯ ЗАМЕТОК					
I					
I					
I I					
' 					
I					
I					
1					
1 					
i I					
I					
1					
<u>'</u>					
I					
I					
[
1					

Официальный дистрибьютор в России и СНГ UNITED THERMO RUS

РФ, 108811, г. Москва, 22-й Километр Киевское шоссе (БП "Румянцево"), домовлад. 4, стр. 2, этаж 2, блок Г, подъезд 18, офис 203Г Телефон: 8 495 646 11 88

info@unitedthermo.ru www.unitedthermo.ru

